%I
%S 3,43,143,7143,57143,857143,2857143,42857143,142857143,7142857143,
%T 57142857143,857142857143,2857142857143,42857142857143,
%U 142857142857143,7142857142857143,57142857142857143
%N 7automorphic numbers ending in 3: final digits of 7n^2 agree with n.
%C a(n) is the unique positive integer less than 10^n such that 7a(n)  1 is divisible by 10^n.  _Eric M. Schmidt_, Aug 18 2012
%H Eric M. Schmidt, <a href="/A030990/b030990.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AutomorphicNumber.html">Automorphic Number</a>
%H <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>
%H <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (11,10,1000,11000,10000).
%t LinearRecurrence[{11,10,1000,11000,10000},{3,43,143,7143,57143},20] (* _Harvey P. Dale_, Apr 02 2018 *)
%o (Sage) [inverse_mod(7, 10^n) for n in range(1, 1001)] # _Eric M. Schmidt_, Aug 18 2012
%K nonn,base,changed
%O 1,1
%A _Eric W. Weisstein_
