The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281367 "Nachos" sequence based on triangular numbers. 4
1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 2, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The nachos sequence based on a sequence of positive numbers S starting with 1 is defined as follows: To find a(n) we start with a pile of n nachos.
During each phase, we successively remove S(1), then S(2), then S(3), ..., then S(i) nachos from the pile until fewer than S(i+1) remain. Then we start a new phase, successively removing S(1), then S(2), ..., then S(j) nachos from the pile until fewer than S(j+1) remain. Repeat. a(n) is the number of phases required to empty the pile.
Suggested by the Fibonachos sequence A280521, which is the case when S is 1,1,2,3,5,8,13,... (A000045).
If S = 1,2,3,4,5,... we get A057945.
If S = 1,2,3,5,7,11,... (A008578) we get A280055.
If S = triangular numbers we get the present sequence.
If S = squares we get A280053.
If S = powers of 2 we get A100661.
More than the usual number of terms are shown in order to distinguish this sequence from A104246.
LINKS
Reddit user Teblefer, Fibonachos
EXAMPLE
If n = 14, in the first phase we successively remove 1, then 3, then 6 nachos, leaving 4 in the pile. The next triangular number is 10, which is bigger than 4, so we start a new phase. We remove 1, then 3 nachos, and now the pile is empty. There were two phases, so a(14)=2.
MAPLE
S:=[seq(i*(i+1)/2, i=1..1000)];
phases := proc(n) global S; local a, h, i, j, ipass;
a:=1; h:=n;
for ipass from 1 to 100 do
for i from 1 to 100 do
j:=S[i];
if j>h then a:=a+1; break; fi;
h:=h-j;
if h=0 then return(a); fi;
od;
od;
return(-1);
end;
t1:=[seq(phases(i), i=1..1000)];
# 2nd program
A281367 := proc(n)
local a, nres, i ;
a := 0 ;
nres := n;
while nres > 0 do
for i from 1 do
if A000292(i) > nres then
break;
end if;
end do:
nres := nres-A000292(i-1) ;
a := a+1 ;
end do:
a ;
end proc:
seq(A281367(n), n=1..80) ; # R. J. Mathar, Mar 05 2017
MATHEMATICA
tri[n_] := n (n + 1) (n + 2)/6;
A281367[n_] := Module[{a = 0, nres = n, i}, While[nres > 0, For[i = 1, True, i++, If[tri[i] > nres, Break[]]]; nres -= tri[i-1]; a++]; a];
Table[A281367[n], {n, 1, 99}] (* Jean-François Alcover, Apr 11 2024, after R. J. Mathar *)
CROSSREFS
For indices of first occurrences of 1,2,3,4,... see A281368.
Different from A104246.
Sequence in context: A264031 A338482 A104246 * A007720 A129968 A027615
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 30 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 20:41 EDT 2024. Contains 372494 sequences. (Running on oeis4.)