login
A280055
Nachos sequence based on 1 plus primes (A008578).
4
1, 2, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 4, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4, 3, 4, 5, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4, 3, 4, 5, 3, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 2, 3, 4, 3, 4, 5, 3, 2, 3, 4, 3
OFFSET
1,2
COMMENTS
Like A280053 but based on 1,2,3,5,7,11,... rather than squares. See that entry for further information.
Equivalently, greedily subtract terms of A014284 from n until reaching 0; a(n) = number of steps required.
LINKS
EXAMPLE
26 takes 4 phases to read 0:
subtract leaves
1 25
2 23
3 20
5 15
7 8
------
1 7
2 5
3 2
------
1 1
------
1 0
so a(26) = 4
MAPLE
A280055 := proc(n)
local a, nres, i ;
a := 0 ;
nres := n;
while nres > 0 do
for i from 1 do
if A014284(i) > nres then
break;
end if;
end do:
nres := nres-A014284(i-1) ;
a := a+1 ;
end do:
a ;
end proc:
seq(A280055(n), n=1..80) ; # R. J. Mathar, Mar 05 2017
CROSSREFS
For records see A280760.
Sequence in context: A374438 A285730 A353655 * A253092 A194546 A369320
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 08 2017
STATUS
approved