login
A280629
E.g.f. sqrt(D(x)^2 + S(x)^2), such that: C(x)^2 - S(x)^2 = 1 and D(x)^4 - S(x)^4 = 1, where functions S(x), C(x), and D(x) are described by A280625, A280626, and A280627, respectively.
5
1, 1, 7, 139, 6913, 508921, 57888967, 9313574419, 1984690709953, 547467006437041, 188946742298214727, 79783392959511537499, 40498043815904027702593, 24314800861291379306213161, 17047720745682515427867108487, 13802952030641885344209574247779, 12780883488499783875309105315925633, 13420910251496135926622603184056054881, 15863354775169518855398667975850797997447, 20966527201075972453953302254528386060431659
OFFSET
0,3
LINKS
FORMULA
E.g.f. sqrt(D(x)^2 + S(x)^2) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.
(1.a) C^2 - S^2 = 1.
(1.b) D^4 - S^4 = 1.
Integrals.
(2.a) S = Integral C*D^3 dx.
(2.b) C = 1 + Integral S*D^3 dx.
(2.c) D = 1 + Integral C*S^3 dx.
(2.d) C + S = 1 + Integral D^3 * (C + S) dx.
(2.e) D^2 + S^2 = 1 + Integral 2*S*C*D * (D^2 + S^2) dx.
(2.f) D - S = 1 - Integral C * (D^3 - S^3) dx.
Exponential.
(3.a) C + S = exp( Integral D^3 dx ).
(3.b) D^2 + S^2 = exp( Integral 2*S*C*D dx ).
(3.d) C = cosh( Integral D^3 dx ).
(3.e) S = sinh( Integral D^3 dx ).
(3.f) D^2 = cosh( Integral 2*S*C*D dx ).
(3.g) S^2 = sinh( Integral 2*S*C*D dx ).
(3.h) sinh( Integral D^3 dx )^2 = sinh( Integral 2*S*C*D dx ).
Derivatives.
(4.a) S' = C*D^3.
(4.b) C' = S*D^3.
(4.c) D' = C*S^3.
(4.d) (C' + S')/(C + S) = D^3.
(4.e) (D^2 + S^2)'/(D^2 + S^2) = 2*S*C*D.
(4.f) (D' - S')/(D - S) = -C * (D^2 + D*S + S^2).
EXAMPLE
E.g.f.: sqrt(D(x)^2 + S(x)^2) = 1 + x^2/2! + 7*x^4/4! + 139*x^6/6! + 6913*x^8/8! + 508921*x^10/10! + 57888967*x^12/12! + 9313574419*x^14/14! + 1984690709953*x^16/16! + 547467006437041*x^18/18! + 188946742298214727*x^20/20! + 79783392959511537499*x^22/22! + 40498043815904027702593*x^24/24! + 24314800861291379306213161*x^26/26! +...
such that
(1) sqrt(D(x)^2 + S(x)^2) = exp( Integral S(x)*C(x)*D(x) dx ),
(2) sqrt(D(x)^2 + S(x)^2) = sqrt(1 + Integral 2*S(x)*C(x)*D(x) * (D(x)^2 + S(x)^2) dx),
(3) C(x)^2 - S(x)^2 = 1,
(4) D(x)^4 - S(x)^4 = 1,
where functions S(x), C(x), and D(x) are illustrated below.
RELATED SERIES.
S(x) = x + x^3/3! + 19*x^5/5! + 739*x^7/7! + 35641*x^9/9! + 3753721*x^11/11! + 500577499*x^13/13! + 91718242219*x^15/15! + 22737318482161*x^17/17! + 6983681901945841*x^19/19! + 2676021948941279779*x^21/21! + 1243547540389481251699*x^23/23! + 686920343453752746986281*x^25/25! + 446624144083900575607651561*x^27/27! +...
C(x) = 1 + x^2/2! + x^4/4! + 109*x^6/6! + 3889*x^8/8! + 292681*x^10/10! + 37275121*x^12/12! + 5709311029*x^14/14! + 1254902705569*x^16/16! + 350061261777361*x^18/18! + 120872805166945441*x^20/20! + 51564789352080559549*x^22/22! + 26284030671328082426449*x^24/24! + 15848108292907342195314841*x^26/26! + 11161807217694742818283238161*x^28/28! +...
D(x) = 1 + 6*x^4/4! + 120*x^6/6! + 4284*x^8/8! + 382560*x^10/10! + 40975176*x^12/12! + 6524350560*x^14/14! + 1420005102864*x^16/16! + 386400824613120*x^18/18! + 133774424157792096*x^20/20! + 56530740636066364800*x^22/22! + 28642309445854790698944*x^24/24! + 17209537237868777504801280*x^26/26! + 12062425479867549597010598016*x^28/28! +...
C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 19*x^5/5! + 109*x^6/6! + 739*x^7/7! + 3889*x^8/8! + 35641*x^9/9! + 292681*x^10/10! + 3753721*x^11/11! + 37275121*x^12/12! + 500577499*x^13/13! + 5709311029*x^14/14! + 91718242219*x^15/15! + 1254902705569*x^16/16! + 22737318482161*x^17/17! + 350061261777361*x^18/18! + 6983681901945841*x^19/19! + 120872805166945441*x^20/20! +...
C(x)^2 = 1 + 2*x^2/2! + 8*x^4/4! + 248*x^6/6! + 13952*x^8/8! + 981152*x^10/10! + 128012288*x^12/12! + 21334590848*x^14/14! + 4721317609472*x^16/16! + 1369528258007552*x^18/18! + 487519312215277568*x^20/20! + 212815485425900238848*x^22/22! + 111362541450468672929792*x^24/24! + 68655437948261593572810752*x^26/26! +...
such that C(x)^2 = 1 + S(x)^2.
D(x)^2 = 1 + 12*x^4/4! + 240*x^6/6! + 11088*x^8/8! + 1067520*x^10/10! + 120702912*x^12/12! + 20731576320*x^14/14! + 4706356447488*x^16/16! + 1338363800125440*x^18/18! + 482064458680691712*x^20/20! + 210556245001175040000*x^22/22! + 110103167770187282239488*x^24/24! + 68059391373987458643394560*x^26/26! +...
D(x)^3 = 1 + 18*x^4/4! + 360*x^6/6! + 20412*x^8/8! + 2054880*x^10/10! + 246667608*x^12/12! + 45345998880*x^14/14! + 10711766694672*x^16/16! + 3182147454332160*x^18/18! + 1190153458696009248*x^20/20! + 536990828063228035200*x^22/22! + 289633988053086885277632*x^24/24! + 184083367623416380788963840*x^26/26! +...
D(x)^4 = 1 + 24*x^4/4! + 480*x^6/6! + 32256*x^8/8! + 3344640*x^10/10! + 426353664*x^12/12! + 83091939840*x^14/14! + 20370678153216*x^16/16! + 6310701707796480*x^18/18! + 2444823498480943104*x^20/20! + 1138286636773997568000*x^22/22! + 632578480424353976549376*x^24/24! + 413014933705057627523973120*x^26/26! +...
such that D(x)^4 = 1 + S(x)^4.
D(x)^2 + S(x)^2 = 1 + 2*x^2/2! + 20*x^4/4! + 488*x^6/6! + 25040*x^8/8! + 2048672*x^10/10! + 248715200*x^12/12! + 42066167168*x^14/14! + 9427674056960*x^16/16! + 2707892058132992*x^18/18! + 969583770895969280*x^20/20! + 423371730427075278848*x^22/22! + 221465709220655955169280*x^24/24! + 136714829322249052216205312*x^26/26! +...
PROG
(PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, 2*n, S = intformal( C*D^3 + x*O(x^(2*n))); C = 1 + intformal( S*D^3 ); D = 1 + intformal( C*S^3 )); (2*n)!*polcoeff(sqrt(D^2+S^2), 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A280625 (S), A280626 (C), A280627 (D), A280628 (C+S).
Sequence in context: A190195 A126156 A082162 * A348188 A238692 A288322
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2017
STATUS
approved