login
A190195
Numerators of a Taylor series expansion of 1/sqrt(cosh(x)) (even powers only).
1
1, -1, 7, -139, 5473, -51103, 34988647, -4784061619, 17782347217, -203906055033841, 4586025046220899, -234038275571853889, 9127322584507530151393, -4621897483978366951337161, 390009953658229908025520161, -1860452328661957054823447670979, 111446346975327291562408943638981, -14050053632877769956552601074149491, 1269258883676324618437848731917951368967, -1408182090109327874242950762763137949746859
OFFSET
0,3
LINKS
Philippe Flajolet, Xavier Gourdon, and Philippe Dumas, Mellin transforms and asymptotics: harmonic sums, Special volume on mathematical analysis of algorithms. Theoret. Comput. Sci. 144 (1995), no. 1-2, 3-58.
FORMULA
a(n) = numerator(b(n)), where b(n) = Sum_{k=1..n} b(n-k)*(k/(2*n)-1)/(2*k)!, with b(0)=1. - Tani Akinari, Sep 17 2023
a(n) = numerator((-1)^n*A186491(n)/(4^n*(2*n)!)). - Andrew Howroyd, Sep 19 2023
EXAMPLE
1/sqrt(cosh(x)) = 1 - (1/4)*x^2 + (7/96)*x^4 - (139/5760)*x^6 + (5473/645120)*x^8 - (51103/16588800)*x^10 + ...
MAPLE
a:= n-> numer(coeff(series(1/sqrt(cosh(x)), x, 2*n+1), x, 2*n)):
seq(a(n), n=0..19); # Alois P. Heinz, Sep 19 2023
PROG
(Maxima) b[n]:=if n=0 then 1 else sum(b[n-k]*(k/n/2-1)/(2*k)!, k, 1, n)$ a[n]:=num(b[n])$
makelist(a[n], n, 0, 20); /* Tani Akinari, Sep 17 2023 */
CROSSREFS
Cf. A190196 (denominators), A186491.
Sequence in context: A274525 A221375 A351334 * A126156 A082162 A280629
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, May 05 2011
STATUS
approved