login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280627 E.g.f. D(x) satisfies: C(x)^2 - S(x)^2 = 1 and D(x)^4 - S(x)^4 = 1, where functions S(x) and C(x) are described by A280625 and A280626, respectively. 5
1, 0, 6, 120, 4284, 382560, 40975176, 6524350560, 1420005102864, 386400824613120, 133774424157792096, 56530740636066364800, 28642309445854790698944, 17209537237868777504801280, 12062425479867549597010598016, 9764667204009505877211747479040, 9042097280460821686724885486625024, 9493787529624453974176836837131427840, 11221110790852570214718646510965006951936, 14830442526518302962134606954574648582420480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

E.g.f. D(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.

(1.a) C^2 - S^2 = 1.

(1.b) D^4 - S^4 = 1.

Integrals.

(2.a) S = Integral C*D^3 dx.

(2.b) C = 1 + Integral S*D^3 dx.

(2.c) D = 1 + Integral C*S^3 dx.

(2.d) C + S = 1 + Integral D^3 * (C + S) dx.

(2.e) D^2 + S^2 = 1 + Integral 2*S*C*D * (D^2 + S^2) dx.

(2.f) D - S = 1 - Integral C * (D^3 - S^3) dx.

Exponential.

(3.a) C + S = exp( Integral D^3 dx ).

(3.b) D^2 + S^2 = exp( Integral 2*S*C*D dx ).

(3.d) C = cosh( Integral D^3 dx ).

(3.e) S = sinh( Integral D^3 dx ).

(3.f) D^2 = cosh( Integral 2*S*C*D dx ).

(3.g) S^2 = sinh( Integral 2*S*C*D dx ).

(3.h) sinh( Integral D^3 dx )^2 = sinh( Integral 2*S*C*D dx ).

Derivatives.

(4.a) S' = C*D^3.

(4.b) C' = S*D^3.

(4.c) D' = C*S^3.

(4.d) S'*D - D'*S = C.

(4.e) S'*C - C'*S = D^3.

(4.f) (C' + S')/(C + S) = D^3.

(4.g) (D^2 + S^2)'/(D^2 + S^2) = 2*S*C*D.

(4.h) (D' - S')/(D - S) = -C * (D^2 + D*S + S^2).

EXAMPLE

E.g.f.: D(x) = 1 + 6*x^4/4! + 120*x^6/6! + 4284*x^8/8! + 382560*x^10/10! + 40975176*x^12/12! + 6524350560*x^14/14! + 1420005102864*x^16/16! + 386400824613120*x^18/18! + 133774424157792096*x^20/20! + 56530740636066364800*x^22/22! + 28642309445854790698944*x^24/24! + 17209537237868777504801280*x^26/26! + 12062425479867549597010598016*x^28/28! +...

such that

(1) C(x)^2 - S(x)^2 = 1,

(2) D(x)^4 - S(x)^4 = 1,

where functions S(x) and C(x) are illustrated below.

RELATED SERIES.

S(x) = x + x^3/3! + 19*x^5/5! + 739*x^7/7! + 35641*x^9/9! + 3753721*x^11/11! + 500577499*x^13/13! + 91718242219*x^15/15! + 22737318482161*x^17/17! + 6983681901945841*x^19/19! + 2676021948941279779*x^21/21! + 1243547540389481251699*x^23/23! + 686920343453752746986281*x^25/25! + 446624144083900575607651561*x^27/27! +...

C(x) = 1 + x^2/2! + x^4/4! + 109*x^6/6! + 3889*x^8/8! + 292681*x^10/10! + 37275121*x^12/12! + 5709311029*x^14/14! + 1254902705569*x^16/16! + 350061261777361*x^18/18! + 120872805166945441*x^20/20! + 51564789352080559549*x^22/22! + 26284030671328082426449*x^24/24! + 15848108292907342195314841*x^26/26! + 11161807217694742818283238161*x^28/28! +...

C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 19*x^5/5! + 109*x^6/6! + 739*x^7/7! + 3889*x^8/8! + 35641*x^9/9! + 292681*x^10/10! + 3753721*x^11/11! + 37275121*x^12/12! + 500577499*x^13/13! + 5709311029*x^14/14! + 91718242219*x^15/15! + 1254902705569*x^16/16! + 22737318482161*x^17/17! + 350061261777361*x^18/18! + 6983681901945841*x^19/19! + 120872805166945441*x^20/20! +...

such that C(x) + S(x) = exp( Integral D(x)^3 dx ).

C(x)^2 = 1 + 2*x^2/2! + 8*x^4/4! + 248*x^6/6! + 13952*x^8/8! + 981152*x^10/10! + 128012288*x^12/12! + 21334590848*x^14/14! + 4721317609472*x^16/16! + 1369528258007552*x^18/18! + 487519312215277568*x^20/20! + 212815485425900238848*x^22/22! + 111362541450468672929792*x^24/24! + 68655437948261593572810752*x^26/26! +...

such that C(x)^2 = 1 + S(x)^2.

D(x)^2 = 1 + 12*x^4/4! + 240*x^6/6! + 11088*x^8/8! + 1067520*x^10/10! + 120702912*x^12/12! + 20731576320*x^14/14! + 4706356447488*x^16/16! + 1338363800125440*x^18/18! + 482064458680691712*x^20/20! + 210556245001175040000*x^22/22! + 110103167770187282239488*x^24/24! + 68059391373987458643394560*x^26/26! +...

D(x)^3 = 1 + 18*x^4/4! + 360*x^6/6! + 20412*x^8/8! + 2054880*x^10/10! + 246667608*x^12/12! + 45345998880*x^14/14! + 10711766694672*x^16/16! + 3182147454332160*x^18/18! + 1190153458696009248*x^20/20! + 536990828063228035200*x^22/22! + 289633988053086885277632*x^24/24! + 184083367623416380788963840*x^26/26! +...

D(x)^4 = 1 + 24*x^4/4! + 480*x^6/6! + 32256*x^8/8! + 3344640*x^10/10! + 426353664*x^12/12! + 83091939840*x^14/14! + 20370678153216*x^16/16! + 6310701707796480*x^18/18! + 2444823498480943104*x^20/20! + 1138286636773997568000*x^22/22! + 632578480424353976549376*x^24/24! + 413014933705057627523973120*x^26/26! +...

such that D(x)^4 = 1 + S(x)^4.

D(x)^2 + S(x)^2 = 1 + 2*x^2/2! + 20*x^4/4! + 488*x^6/6! + 25040*x^8/8! + 2048672*x^10/10! + 248715200*x^12/12! + 42066167168*x^14/14! + 9427674056960*x^16/16! + 2707892058132992*x^18/18! + 969583770895969280*x^20/20! + 423371730427075278848*x^22/22! + 221465709220655955169280*x^24/24! + 136714829322249052216205312*x^26/26! +...

sqrt(D(x)^2 + S(x)^2) = 1 + x^2/2! + 7*x^4/4! + 139*x^6/6! + 6913*x^8/8! + 508921*x^10/10! + 57888967*x^12/12! + 9313574419*x^14/14! + 1984690709953*x^16/16! + 547467006437041*x^18/18! + 188946742298214727*x^20/20! + 79783392959511537499*x^22/22! + 40498043815904027702593*x^24/24! + 24314800861291379306213161*x^26/26! +...

such that sqrt(D(x)^2 + S(x)^2) = exp( Integral S(x)*C(x)*D(x) dx ).

PROG

(PARI) {a(n) = my(S=x, C=1, D=1); for(i=0, 2*n, S = intformal( C*D^3 + x*O(x^(2*n))); C = 1 + intformal( S*D^3 ); D = 1 + intformal( C*S^3 )); (2*n)!*polcoeff(D, 2*n)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A280625 (S), A280626 (C), A280628 (C+S), A280629 (sqrt(D^2+S^2)).

Sequence in context: A075844 A029697 A248045 * A196688 A126448 A126446

Adjacent sequences:  A280624 A280625 A280626 * A280628 A280629 A280630

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 02:30 EST 2019. Contains 329850 sequences. (Running on oeis4.)