login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280269
Irregular triangle T(n,m) read by rows: smallest power e of n that is divisible by m = term k in row n of A162306.
4
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 3, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 0, 1, 2, 1, 3, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 3, 1, 2, 4, 1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 2, 1, 0, 1, 2, 3, 1, 4, 1, 0, 1, 0, 1, 1, 1, 1, 1
OFFSET
1,14
COMMENTS
This table eliminates the negative values in row n of A279907.
Let k = A162306(n,m), i.e., the value in column m of row n.
T(n,1) = 0 since 1 | n^0.
T(n,p) = 1 for prime divisors p of n since p | n^1.
T(n,d) = 1 for divisors d > 1 of n since d | n^1.
Row n for prime p have two terms, {0,1}, the maximum value 1, since all k < p are coprime to p, and k | p^1 only when k = p.
Row n for prime power p^i have (i+1) terms, one zero and i ones, since all k that appear in corresponding row n of A162306 are divisors d of p^i.
Values greater than 1 pertain only to composite k of composite n > 4, but not in all cases. T(n,k) = 1 for squarefree kernels k of composite n.
Numbers k > 1 coprime to n and numbers that are products of at least one prime q coprime to n and one prime p | n do not appear in A162306; these do not divide n^e evenly.
T(n,k) is nonnegative for all numbers k for which n^k (mod k) = 0, i.e., all the prime divisors p of k also divide n.
The largest possible value s in row n of T = floor(log_2(n)), since the largest possible multiplicity of any number m <= n pertains to perfect powers of 2, as 2 is the smallest prime. This number s first appears at T(2^s + 2, 2^s) for s > 1.
1/k terminates T(n,k) digits after the radix point in base n for values of k that appear in row n of A162306.
Originally from Robert Israel at A279907: (Start)
T(a*b,c*d) = max(T(a,c),T(b,d)) if GCD(a,b)=1, GCD(b,d)=1,T(a,c)>=0 and T(b,d)>=0.
T(n,a*b) = max(T(n,a),T(n,b)) if GCD(a,b)=1 and T(n,a)>=0 and T(n,b)>=0.
(End)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10202 (rows 1 <= n <= 660)
EXAMPLE
Triangle T(n,m) begins: Triangle A162306(n,k):
1: 0 1
2: 0 1 1 2
3: 0 1 1 3
4: 0 1 1 1 2 4
5: 0 1 1 5
6: 0 1 1 2 1 1 2 3 4 6
7: 0 1 1 7
8: 0 1 1 1 1 2 4 8
9: 0 1 1 1 3 9
10: 0 1 2 1 3 1 1 2 4 5 8 10
...
MATHEMATICA
Table[SelectFirst[Range[0, #], PowerMod[n, #, k] == 0 &] /. m_ /; MissingQ@ m -> Nothing &@ Floor@ Log2@ n, {n, 24}, {k, n}] // Flatten (* Version 10.2, or *)
DeleteCases[#, -1] & /@ Table[If[# == {}, -1, First@ #] &@ Select[Range[0, #], PowerMod[n, #, k] == 0 &] &@ Floor@ Log2@ n, {n, 24}, {k, n}] // Flatten (* or *)
DeleteCases[#, -1] & /@ Table[Boole[k == 1] + (Boole[#[[-1, 1]] == 1] (-1 + Length@ #) /. 0 -> -1) &@ NestWhileList[Function[s, {#1/s, s}]@ GCD[#1, #2] & @@ # &, {k, n}, And[First@# != 1, ! CoprimeQ @@ #] &], {n, 24}, {k, n}] // Flatten
CROSSREFS
Cf. A162306, A279907 (T(n,k) with values for all 1 <= k <= n), A280274 (maximum values in row n), A010846 (number of nonnegative k in row n), A051731 (k with e <= 1), A000005 (number of k in row n with e <= 1), A272618 (k with e > 1), A243822 (number of k in row n with e > 1), A007947.
Sequence in context: A258141 A037889 A339872 * A321894 A355824 A355826
KEYWORD
nonn,tabf,easy
AUTHOR
Michael De Vlieger, Dec 30 2016
STATUS
approved