login
A355824
Dirichlet inverse of A355823, characteristic function of exponentially 2^n-numbers.
3
1, -1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, -1, 1, 1, -2, -1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 0, -1, -1, -1, 2, 1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 0, 0, 1, -1, 2, 0, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 2, -2, 1, -1, 0, 1, 1, 1, -1, -1, 0, 1, 0, 1, 1, 1, -2, -1, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 0, -1, -1, 1, 2, -1, -1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, -1, -3
OFFSET
1,16
COMMENTS
Multiplicative because A355823 is.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A355823(n/d) * a(d).
MATHEMATICA
s[n_] := If[AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &], 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#] * a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI)
A355823(n) = factorback(apply(e->!bitand(e, e-1), factor(n)[, 2]));
memoA355824 = Map();
A355824(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355824, n, &v), v, v = -sumdiv(n, d, if(d<n, A355823(n/d)*A355824(d), 0)); mapput(memoA355824, n, v); (v)));
CROSSREFS
Differs from related A355826 for the first time at n=128, where a(128) = -3, while A355826(128) = -4.
Sequence in context: A339872 A280269 A321894 * A355826 A355819 A330262
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved