login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279321 Period 7: repeat [1, 3, 5, 7, 5, 3, 1]. 2
1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).

FORMULA

a(n) = abs(2n + 1 - 14*round((2n + 1)/14)).

a(n) = (25 + 2*( ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) - ((n+4) mod 7) - ((n+5) mod 7) - ((n+6) mod 7) ))/7. - Wesley Ivan Hurt, Dec 23 2016

From Colin Barker, Mar 21 2019: (Start)

G.f.: (1 + 2*x + x^2 + x^3)*(1 + x + 2*x^2 + x^3) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).

a(n) = a(n-7) for n>6.

(End)

MAPLE

A279321:=n->[1, 3, 5, 7, 5, 3, 1, 1][(n mod 7)+1]: seq(A279321(n), n=0..100); # Wesley Ivan Hurt, Dec 23 2016

MATHEMATICA

PadRight[{}, 120, {1, 3, 5, 7, 5, 3, 1}] (* Vincenzo Librandi, Dec 10 2016 *)

With[{k = 14}, Table[Abs[2 n + 1 - k Round[(2 n + 1)/k]], {n, 0, 120}]] (* Michael De Vlieger, Dec 10 2016 *)

PROG

(MAGMA) &cat[[1, 3, 5, 7, 5, 3, 1]: n in [0..10]];

(PARI) Vec((1 + 2*x + x^2 + x^3)*(1 + x + 2*x^2 + x^3) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^85)) \\ Colin Barker, Mar 21 2019

CROSSREFS

Bisection of A279313.

Sequence in context: A064537 A023899 A324712 * A254863 A085965 A238205

Adjacent sequences:  A279318 A279319 A279320 * A279322 A279323 A279324

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Dec 09 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 02:31 EDT 2020. Contains 335762 sequences. (Running on oeis4.)