login
A279186
Maximal entry in n-th row of A279185.
8
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6, 3, 4
OFFSET
1,7
COMMENTS
See A256608 for LCM of entries in row n.
From Robert Israel, Dec 15 2016: (Start)
If m and k are coprime then a(m*k) = lcm(a(m), a(k)).
If n is in A061345 and r = A053575(n) is in A167791, then a(n) = A000010(r). (End)
LINKS
FORMULA
a(n) = A007733(A002322(n)). - Max Alekseyev, Feb 02 2024
MAPLE
A279186 := proc(n)
local a, k ;
a := 1 ;
for k from 0 to n-1 do
a := max(a, A279185(k, n)) ;
end do:
a ;
end proc : # R. J. Mathar, Dec 15 2016
MATHEMATICA
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
a[n_] := Table[T[n, k], {k, 0, n - 1}] // Max;
Array[a, 90] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
PROG
(PARI) { A279186(n) = my(r=lcm(znstar(n)[2])); znorder(Mod(2, r>>valuation(r, 2))); } \\ Max Alekseyev, Feb 02 2024
CROSSREFS
Start is same as A256607 and A256608. However, all three are different.
Sequence in context: A280726 A256607 A256608 * A164799 A274451 A193787
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 14 2016
STATUS
approved