OFFSET
1,1
COMMENTS
Numbers k such that the binary expansion of 1/k has period phi(k). For example 1/27 has a period of 18 bits.
All entries are odd. An odd composite number n can have a primitive root if and only if it is a prime power (see A033948). - V. Raman, Oct 04 2012
It is unknown whether there is a prime p such that p is in this sequence while p^2 is not. - Jianing Song, Jan 27 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
MATHEMATICA
pr=2; Select[Range[2, 2000], MultiplicativeOrder[pr, # ] == EulerPhi[ # ] &]
PROG
(PARI) for(n=3, 200, if(n%2==1&&znorder(Mod(2, n))==eulerphi(n), printf(n", "))) \\ V. Raman, Oct 04 2012
(PARI) is(n)=n%2 && isprimepower(n) && znorder(Mod(2, n))==eulerphi(n-1) \\ Charles R Greathouse IV, Jul 05 2013
(Magma) [n: n in [3..619] | IsPrimitive(2, n)]; // Arkadiusz Wesolowski, Dec 22 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 12 2009
STATUS
approved