login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279065
Fermi-Dirac primeth recurrence: a(0)=1; thereafter a(n+1) = a(n)-th number of the form p^(2^k) where p is prime and k>=0.
16
1, 2, 3, 4, 5, 7, 11, 19, 47, 169, 907, 6829, 67931, 851891, 13034887, 237522877, 5057212439, 123890683831
OFFSET
0,2
COMMENTS
Daniel Forgues (see A182979) and Reinhard Zumkeller (see A213925) describe the increasing sequence of positive integers of the form p^(2^k) where p is prime and k>=0 (A050376 or A084400) as Fermi-Dirac primes, because any positive integer has a unique factorization into distinct terms.
MATHEMATICA
nn=10000; FDfactor[n_]:=If[n===1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor, nn, 1, Union];
NestWhileList[Part[FDprimeList, #]&, 1, #<=Length[FDprimeList]&]
PROG
(PARI) lista(kmax) = {my(m = 1, c=0, isp); print1(1, ", "); for(k = 1, kmax, isp = isprimepower(k); if(isp && isp >> valuation(isp, 2) == 1, c++); if(c == m, print1(k, ", "); m=k)); } \\ Amiram Eldar, Oct 05 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2016
EXTENSIONS
a(15)-a(17) from Amiram Eldar, Oct 05 2023
STATUS
approved