OFFSET
0,2
COMMENTS
Daniel Forgues (see A182979) and Reinhard Zumkeller (see A213925) describe the increasing sequence of positive integers of the form p^(2^k) where p is prime and k>=0 (A050376 or A084400) as Fermi-Dirac primes, because any positive integer has a unique factorization into distinct terms.
LINKS
MATHEMATICA
nn=10000; FDfactor[n_]:=If[n===1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor, nn, 1, Union];
NestWhileList[Part[FDprimeList, #]&, 1, #<=Length[FDprimeList]&]
PROG
(PARI) lista(kmax) = {my(m = 1, c=0, isp); print1(1, ", "); for(k = 1, kmax, isp = isprimepower(k); if(isp && isp >> valuation(isp, 2) == 1, c++); if(c == m, print1(k, ", "); m=k)); } \\ Amiram Eldar, Oct 05 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2016
EXTENSIONS
a(15)-a(17) from Amiram Eldar, Oct 05 2023
STATUS
approved