

A084400


a(1) = 1; for n>1, a(n) = smallest number that does not divide the product of all previous terms.


14



1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

All numbers of the form p^(2^k) are members.
Except for the first term, same as A050376.  David Wasserman, Dec 22 2004
Also, the lexicographically earliest sequence of distinct positive integers such that the number of divisors of the product of n initial terms (for any n) is a power of 2.  Ivan Neretin, Aug 12 2015


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000


PROG

(PARI) find(pv)=k = 1; while (! (pv % k), k++); return (k);
lista(nn) = print1(pv=1, ", "); for (i=1, nn, nv = find(pv); pv *= nv; print1(nv, ", ")) \\ Michel Marcus, Aug 12 2015
(PARI) A209229(n)=if(n%2, n==1, isprimepower(n))
is(n)=A209229(isprimepower(n))  n==1 \\ Charles R Greathouse IV, Oct 19 2015


CROSSREFS

Cf. A000040 (primes), A026416, A000028, A066724, A026477, A050376.
Sequence in context: A009087 A026477 A079852 * A050376 A280257 A050198
Adjacent sequences: A084397 A084398 A084399 * A084401 A084402 A084403


KEYWORD

nonn


AUTHOR

Amarnath Murthy, May 31 2003


EXTENSIONS

More terms from Patrick De Geest, Jun 05 2003


STATUS

approved



