login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277735 Fixed point of the morphism 0 -> 01, 1 -> 20, 2 -> 0; starting with a(1) = 0. 4
0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

From Clark Kimberling, May 21 2017: (Start)

Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2.  Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where

U = 1.8392867552141611325518525646532866...,

V = U^2 = 3.3829757679062374941227085364...,

W = U^3 = 6.2222625231203986266745611011....

If n >=2, then u(n) - u(n-1) is in {1,2,3}, v(n) - v(n-1) is in {2,4,5}, and w(n) - w(n-1) is in {4,7,9}. (u = A277736, v = A277737, w = A277738). (End)

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..20000

Index entries for sequences that are fixed points of mappings

MAPLE

with(ListTools);

T:=proc(S) Flatten(subs( {0=[0, 1], 1=[2, 0], 2=[0]}, S)); end;

S:=[0];

for n from 1 to 10 do S:=T(S); od:

S;

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10] (* A277735 *)

Flatten[Position[s, 0]] (* A277736 *)

Flatten[Position[s, 1]] (* A277737 *)

Flatten[Position[s, 2]] (* A277738 *)

(* - Clark Kimberling, May 21 2017 *)

CROSSREFS

Cf. A277736, A277737, A277738.

Sequence in context: A280749 A085491 A284258 * A248911 A116681 A131371

Adjacent sequences:  A277732 A277733 A277734 * A277736 A277737 A277738

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 17 10:50 EDT 2017. Contains 293469 sequences.