OFFSET
1,1
COMMENTS
In fact, m is both the ceiling of the square root of 2n^2/p and the floor of the square root of 2(n+1)^2 / p.
Eggleton et al. show that a(n)=3 if and only if n is a term in A277644.
First occurrence of the n-th prime > 2: 1, 49, 5, 21, 10, 174, 27, 223, 1656, 3901, 1286, 1847, 5095, 3117, 5678, 1727, 14844, 23678, 10986, 33868, 41241, 42794, 50451, 35301, 39546, 206241, 10561, 89600, 50075, 87273, 75922, 142760, 3493, 236213, 277242, 805287, 619149, 333339, 308517, 186105, 109981, 1385669, 215516, 1389450, 130253, 29797, 368004, 584234, 879460, 1711711, 6061772, 2401437, 1891953, 3664144, 1465847, 3260206, 2908877, 4414026, 1338945, 506017, 5420710, ..., . - Robert G. Wilson v, Nov 17 2016
REFERENCES
R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.
LINKS
Jason Kimberley, Table of n, a(n) for n = 1..10000
EXAMPLE
a(5)=7 because 3 r(5) < 4 r(3) < 5 r(2) < 3 r(7) < 6 r(2) < 5 r(3) < 4 r(5), where r(x) is the square root of x.
MATHEMATICA
f[n_] := Block[{p = 2}, While[ Ceiling[ Sqrt[2 n^2/p]] != Floor[ Sqrt[2 (n + 1)^2/p]], p = NextPrime@ p]; p]; Array[f, 80] (* Robert G. Wilson v, Nov 17 2016 *)
PROG
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Oct 18 2016
STATUS
approved