login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276994
Decimal expansion of the Klarner-Rivest polyomino constant.
3
2, 3, 0, 9, 1, 3, 8, 5, 9, 3, 3, 3, 0, 4, 9, 4, 7, 3, 1, 0, 9, 8, 7, 2, 0, 3, 0, 5, 0, 1, 7, 2, 1, 2, 5, 3, 1, 9, 1, 1, 8, 1, 4, 4, 7, 2, 5, 8, 1, 6, 2, 8, 4, 0, 1, 6, 9, 4, 4, 0, 2, 9, 0, 0, 2, 8, 4, 4, 5, 6, 4, 4, 0, 7, 4, 8, 3, 1, 6, 8, 4, 2, 7, 1, 7, 2, 8, 1, 6, 1, 5, 7, 7, 4, 4, 1, 2, 1, 7, 4, 3, 7, 4, 6, 1
OFFSET
1,1
COMMENTS
Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 662) has a wrong value of this constant (2.309138593331230...).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.19 (Klarner's polyomino constant), p. 380.
LINKS
E. A. Bender, Convex n-ominoes, Discrete Math., 8 (1974), 219-226.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, p. 662.
D. A. Klarner and R. L. Rivest, Asymptotic bounds for the number of convex n-ominoes, Discrete Math., 8 (1974), 31-40.
FORMULA
Equals lim n -> infinity A006958(n)^(1/n).
1/A276994 = 0.4330619231293906645846169654189837... is the smallest positive root of the equation Sum_{n>=0} ((-1)^n * z^(n*(n+1)/2) / (Product_{k=1..n} 1-z^k)^2) = 0.
EXAMPLE
2.309138593330494731098720305017212531911814472581628401694402900284456440748...
MATHEMATICA
1/z/.FindRoot[Sum[(-1)^n * z^(n*(n+1)/2) / QPochhammer[z, z, n]^2, {n, 0, 1000}], {z, 2/5}, WorkingPrecision -> 120]
CROSSREFS
Cf. A006958.
Sequence in context: A120473 A019911 A173344 * A020823 A021437 A074760
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 27 2016
STATUS
approved