login
A276995
Triangle read by rows, T(n,k) = k^(n-k)*(n-k)!*Sum_{j=0..n-k}(-1)^j/j! for 0<=k<=n.
1
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 4, 0, 1, 0, 9, 16, 9, 0, 1, 0, 44, 144, 54, 16, 0, 1, 0, 265, 1408, 729, 128, 25, 0, 1, 0, 1854, 16960, 10692, 2304, 250, 36, 0, 1, 0, 14833, 237312, 193185, 45056, 5625, 432, 49, 0, 1
OFFSET
0,12
FORMULA
T(n,k) = k^(n-k)*Gamma(1+n-k,-1)/exp(1).
EXAMPLE
Triangle starts:
1;
0, 1;
0, 0, 1;
0, 1, 0, 1;
0, 2, 4, 0, 1;
0, 9, 16, 9, 0, 1;
0, 44, 144, 54, 16, 0, 1;
0, 265, 1408, 729, 128, 25, 0, 1;
0, 1854, 16960, 10692, 2304, 250, 36, 0, 1;
MAPLE
T := (n, k) -> A000166(n-k)*k^(n-k): for n from 0 to 9 do seq(T(n, k), k=0..n) od;
MATHEMATICA
Table[If[n-k == 0, 1, k^(n-k) Subfactorial[n-k]], {n, 0, 10}, {k, 0, n}] // Flatten
CROSSREFS
Sequence in context: A348892 A327005 A300858 * A074078 A309635 A130659
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 10 2016
STATUS
approved