login
A276950
Characteristic function for A273670: 1 if there is at least one maximal digit present in the factorial representation of n (A007623), otherwise 0.
6
0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
OFFSET
0
FORMULA
If A260736(n) = 0 then a(n) = 0, otherwise a(n) = 1.
a(n) = A257680(A225901(n)).
Other identities. For all n >= 0:
a(A153880(n)) = 0 and a(A273670(n)) = 1.
a(A005408(n)) = 1.
MATHEMATICA
a[n_] := Module[{k = n, m = 2, c = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r == m - 1, c++]; m++]; If[c > 0, 1, 0]]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
PROG
(Scheme, two alternative implementations)
(define (A276950 n) (if (zero? (A260736 n)) 0 1))
(define (A276950 n) (A257680 (A225901 n)))
CROSSREFS
Cf. A276952 (partial sums).
Sequence in context: A280237 A259044 A285383 * A285351 A284893 A316829
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 22 2016
STATUS
approved