login
A276823
a(n) = 3 * [3*n]_2! / ([2*n+1]_2! * [n+1]_2!), where [n]_q! is the q-factorial.
0
1, 9, 1241, 2634489, 87807053113, 46414431022602681, 390913823614809035461305, 52571422826552549403006580802745, 113007269646365312407427675894837602068665, 3884802624238339577626451297006421856376970743148729
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, q-Factorial, q-Binomial Coefficient.
FORMULA
a(n) ~ c * 2^((n-2)*(2*n+1)), where c = 3/QPochhammer(1/2, 1/2) = 3*A065446 = 3/A048651. - Vaclav Kotesovec, Sep 20 2016
MAPLE
a:= n-> 3*mul((2^j-1), j=1..3*n)/
(mul((2^j-1), j=1..2*n+1)*
mul((2^j-1), j=1..n+1)):
seq(a(n), n=1..12); # Alois P. Heinz, Sep 20 2016
MATHEMATICA
Table[3 QFactorial[3 n, 2]/(QFactorial[2 n + 1, 2] QFactorial[n + 1, 2]), {n, 10}] (* or *)
Table[3 QBinomial[3 n, 2 n + 1, 2]/(1 - 3 * 2^n + 2^(2 n + 1)), {n, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved