login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084149
Denominators of terms in the Pippenger product.
2
1, 9, 1225, 1656369, 44604646326241, 99356606870240615081050533361, 198013920418138539775713504657052494285395323276110397576890625
OFFSET
1,2
LINKS
Nicholas Pippenger, An infinite product for e, The American Mathematical Monthly, Vol. 87, No. 5 (1980), p. 391.
Eric Weisstein's World of Mathematics, Pippenger Product.
FORMULA
a(n) = denominator(((2^(n-1)-1)!!*(2^n)!!/((2^(n-1))!!*(2^n-1)!!))^2/2). - Amiram Eldar, Apr 10 2022
a(n) = denominator( 2^(2^n -1)*((2^(n-1))!)^6 / (((2^n)!)^2 * ((2^(n-2))!)^4) ), with a(1) = 1. - G. C. Greubel, Oct 13 2022
MATHEMATICA
a[n_] := Denominator[((2^(n - 1) - 1)!!*(2^n)!!/((2^(n - 1))!!*(2^n - 1)!!))^2/2]; Array[a, 7] (* Amiram Eldar, Apr 10 2022 *)
PROG
(Magma)
F:=Factorial;
A084149:= func< n | n eq 1 select 1 else Round(Denominator( 2^(2^n -1)*(F(2^(n-1)))^6 / ((F(2^n))^2 * (F(2^(n-2)))^4) )) >;
[A084149(n): n in [1..10]]; // G. C. Greubel, Oct 13 2022
(SageMath)
f=factorial
def A084149(n): return 1 if (n==1) else denominator( 2^(2^n -1)*(f(2^(n-1)))^6 / ((f(2^n))^2 * (f(2^(n-2)))^4) )
[A084149(n) for n in range(1, 10)] # G. C. Greubel, Oct 13 2022
CROSSREFS
Cf. A084148 (numerators).
Sequence in context: A174253 A365595 A266602 * A202981 A276823 A020261
KEYWORD
frac,nonn
AUTHOR
Eric W. Weisstein, May 15 2003
STATUS
approved