login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A276602
Values of k such that k^2 + 10 is a triangular number (A000217).
5
0, 9, 54, 315, 1836, 10701, 62370, 363519, 2118744, 12348945, 71974926, 419500611, 2445028740, 14250671829, 83059002234, 484103341575, 2821561047216, 16445262941721, 95850016603110, 558654836676939, 3256079003458524, 18977819184074205, 110610836100986706
OFFSET
1,2
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Soumeya M. Tebtoub, Hacène Belbachir and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
FORMULA
a(n) = (9/(4*sqrt(2))*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n) ).
a(n) = 9*A001109(n-1).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 9*x^2 / (1-6*x+x^2).
a(n) = (9/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021
EXAMPLE
9 is in the sequence because 9^2+10 = 91, which is a triangular number.
MATHEMATICA
CoefficientList[Series[9*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
(9/2)*Fibonacci[2*(Range[30] -1), 2] (* G. C. Greubel, Sep 15 2021 *)
PROG
(PARI) concat(0, Vec(9*x^2/(1-6*x+x^2) + O(x^30)))
(Magma) [n le 2 select 9*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
(Sage) [(9/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021
CROSSREFS
Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276601 (k=9), where k is the value added to n^2.
Sequence in context: A001392 A188428 A243415 * A079764 A079761 A115784
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 07 2016
STATUS
approved