login
A276598
Values of m such that m^2 + 3 is a triangular number (A000217).
6
0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
OFFSET
1,2
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
FORMULA
a(n) = 5*A001109(n-1).
a(n) = 5*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n )/(4*sqrt(2)).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 5*x^2 / (1-6*x+x^2).
a(n) = (5/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021
EXAMPLE
5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
MATHEMATICA
CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
LinearRecurrence[{6, -1}, {0, 5}, 30] (* Harvey P. Dale, Apr 26 2019 *)
(5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
PROG
(PARI) concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
(PARI) a(n)=([0, 1; -1, 6]^n*[-5; 0])[1, 1] \\ Charles R Greathouse IV, Sep 07 2016
(Magma) [n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
(Sage) [(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021
CROSSREFS
Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276599 (k=5), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.
Cf. A328791 (the resulting triangular numbers).
Sequence in context: A111469 A241588 A229246 * A057088 A156195 A105481
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 07 2016
STATUS
approved