This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275855 Platinum mean sequence: fixed point of the morphism 0 -> 0001, 1 -> 001. 3
 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The morphism has expansion factor P = 2 + sqrt(3) - the platinum mean. That is, on average the length of the n-th iterate of the morphism on a word w of length |w| is |w|P^n. (a(n)) is a Sturmian word (floor(n*alpha) - floor((n-1)*alpha)) for alpha = 2-sqrt(3). Cf. A188068. - Michel Dekking, Feb 07 2017 REFERENCES M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press, Cambridge, 2013, pages 93-94. LINKS Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1. EXAMPLE 0->0001->000100010001001->-> MATHEMATICA {0}~Join~Rest@ Flatten@ SubstitutionSystem[{0 -> {0, 0, 0, 1}, 1 -> {0, 0, 1}}, {1}, 4] (* Version 10.2, or *) Nest[Flatten[# /. {0 -> {0, 0, 0, 1}, 1 -> {0, 0, 1}}] &, {1}, 4] (* Michael De Vlieger, Aug 15 2016, latter after Robert G. Wilson v at A096268 *) CROSSREFS Cf. A019973 (2 + sqrt(3)), A276865. Sequence in context: A011765 A285464 A144602 * A268310 A283316 A284508 Adjacent sequences:  A275852 A275853 A275854 * A275856 A275857 A275858 KEYWORD nonn AUTHOR Dan Rust, Aug 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 17:25 EDT 2019. Contains 321422 sequences. (Running on oeis4.)