login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284508 0-limiting word of the morphism 0->1, 1->0001. 3
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->1, 1->0001 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 1 -> 0001 -> 1110001 -> 0001000100011110001; if the number of iterations is odd, the 1-word evolves from 0 -> 1 -> 0001 -> 1110001 ->, as in A284512.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1}, 1 -> {0, 0, 0, 1}}] &, {0}, 8] (* A284508 *)

Flatten[Position[s, 0]]  (* A284509 *)

Flatten[Position[s, 1]]  (* A284510 *)

CROSSREFS

Cf. A284509, A284510, A284512.

Sequence in context: A275855 A268310 A283316 * A160351 A268340 A336356

Adjacent sequences:  A284505 A284506 A284507 * A284509 A284510 A284511

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 13:47 EST 2021. Contains 341609 sequences. (Running on oeis4.)