login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275824
Number of ways to write n as pen(x) + pen(y) + pen (z) + 2*pen(w), where x,y,z,w are nonnegative integers with x <= y <= z, and pen(k) denotes the pentagonal number k*(3*k-1)/2.
1
1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 2, 3, 1, 1, 2, 1, 3, 2, 6, 4, 3, 4, 2, 3, 2, 2, 3, 1, 5, 4, 4, 5, 4, 4, 1, 3, 3, 1, 3, 5, 7, 6, 4, 5, 3, 5, 3, 3, 4, 4, 5, 4, 6, 7, 3, 5, 4, 4, 3, 2, 6, 3, 6, 5, 5, 7, 7, 7, 3, 6, 7, 5, 4, 4, 9
OFFSET
0,3
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,...., and a(n) = 1 only for n = 0, 1, 4, 6, 8, 9, 18, 19, 21, 33, 40, 43.
(ii) For every m = 5,6,7,... and each integer d > 1 not divisible by 4, any sufficiently large integer can be written as x + y + z + d*w (or x + y + 2*z + d*w) with x,y,z,w m-gonal numbers.
Part (i) of the conjecture is stronger than the classical result that any natural number is the sum of five pentagonal numbers.
LINKS
Xiang-Zi Meng and Zhi-Wei Sun, Sums of four polygonal numbers with coefficients, arXiv:1608.02022 [math.NT], 2016.
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
EXAMPLE
a(4) = 1 since 4 = 0*(3*0-1)/2 + 1*(3*1-1)/2 + 1*(3*1-1)/2 + 1*(3*1-1).
a(18) = 1 since 18 = 1*(3*1-1)/2 + 2*(3*2-1)/2 + 3*(3*3-1)/2 + 0*(3*0-1).
a(19) = 1 since 19 = 0*(3*0-1)/2 + 2*(3*2-1)/2 + 3*(3*3-1)/2 + 1*(3*1-1).
a(21) = 1 since 21 = 1*(3*1-1)/2 + 2*(3*2-1)/2 + 2*(3*2-1)/2 + 2*(3*2-1).
a(33) = 1 since 33 = 0*(3*0-1)/2 + 1*(3*1-1)/2 + 4*(3*4-1)/2 + 2*(3*2-1).
a(40) = 1 since 40 = 0*(3*0-1)/2 + 2*(3*2-1)/2 + 5*(3*5-1)/2 + 0*(3*0-1).
a(43) = 1 since n = 1*(3*1-1)/2 + 2*(3*2-1)/2 + 5*(3*5-1)/2 + 1*(3*1-1).
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
pQ[n_]:=pQ[n]=SQ[24n+1]&&(n==0||Mod[Sqrt[24n+1]+1, 6]==0)
Do[r=0; Do[If[pQ[n-x*(3x-1)-y(3y-1)/2-z(3z-1)/2], r=r+1], {x, 0, (Sqrt[12n+1]+1)/6}, {y, 0, (Sqrt[8(n-x*(3x-1))+1]+1)/6}, {z, y, (Sqrt[12(n-x*(3x-1)-y(3y-1)/2)+1]+1)/6}]; Print[n, " ", r]; Continue, {n, 0, 80}]
CROSSREFS
Sequence in context: A289014 A193238 A323826 * A324869 A167678 A078614
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 10 2016
STATUS
approved