The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275823 Least k such that n divides phi(k^2). 1
 1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 5, 7, 11, 23, 12, 25, 13, 9, 14, 29, 15, 31, 8, 33, 17, 35, 18, 37, 19, 13, 10, 41, 7, 43, 22, 45, 23, 47, 12, 49, 25, 51, 13, 53, 9, 11, 28, 19, 29, 59, 15, 61, 31, 21, 16, 65, 33, 67, 17, 69, 35, 71, 36, 73, 37, 75, 38, 77, 13, 79, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n) <= n. From Robert Israel, Aug 10 2016: (Start) a(n) >= sqrt(n). If n is prime or the square of a prime, then a(n) = n. If n = m^j, then a(n) <= m^ceiling((j+1)/2). (End) EXAMPLE a(54) = 9 because 54 divides phi(9^2) = 54. MAPLE N:= 100: # to get a(1)..a(N) S:= {\$1..N}: A:= 'A': for k from 1 while S <> {} do    r:= numtheory:-phi(k^2);    E:= select(t -> r mod t = 0, S);    if E <> {} then      assign(seq(A[e], e=E) = seq(k , e=E));      S:= S minus E;    fi od: seq(A[i], i=1..N); # Robert Israel, Aug 10 2016 MATHEMATICA Table[k = 1; While[! Divisible[EulerPhi[k^2], n], k++]; k, {n, 80}] (* Michael De Vlieger, Aug 10 2016 *) PROG (PARI) a(n) = {my(k=1); while(eulerphi(k^2) % n, k++); k; } CROSSREFS Cf. A002618. Sequence in context: A088491 A140271 A223491 * A141295 A134198 A060653 Adjacent sequences:  A275820 A275821 A275822 * A275824 A275825 A275826 KEYWORD nonn,easy AUTHOR Altug Alkan, Aug 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 11:38 EDT 2020. Contains 337318 sequences. (Running on oeis4.)