login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275377
Number of odd prime factors (with multiplicity) of generalized Fermat number 3^(2^n) + 1.
4
0, 1, 1, 2, 1, 1, 1, 5, 4, 6
OFFSET
0,4
FORMULA
a(n) = A001222(A059919(n)) - 1 for n > 0. - Felix Fröhlich, Jul 25 2016
EXAMPLE
b(n) = (3^(2^n) + 1)/2.
Complete Factorizations
b(0) = 2
b(1) = 5
b(2) = 41
b(3) = 17*193
b(4) = 21523361
b(5) = 926510094425921
b(6) = 1716841910146256242328924544641
b(7) = 257*275201*138424618868737*3913786281514524929*P21
b(8) = 12289*8972801*891206124520373602817*P90
b(9) = 134382593*22320686081*12079910333441*100512627347897906177*P93*P101
PROG
(PARI) a001222(n) = bigomega(n)
a059919(n) = 3^(2^n)+1
a(n) = if(n==0, 0, a001222(a059919(n))-1) \\ Felix Fröhlich, Jul 25 2016
CROSSREFS
Sequence in context: A227578 A181783 A121395 * A219585 A292464 A090628
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(9) was found in 2008 by Tom Womack
STATUS
approved