login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227578 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 24
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 14, 29, 8, 1, 1, 1, 42, 290, 185, 16, 1, 1, 1, 132, 3532, 7680, 1257, 32, 1, 1, 1, 429, 49100, 456033, 238636, 8925, 64, 1, 1, 1, 1430, 750325, 34426812, 77767945, 8285506, 65445, 128, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Conjecture: column k is asymptotic to c(k) * (k+1)^(k*n)/n^((k^2-1)/2), where c(k) is a constant dependent only on k. - Vaclav Kotesovec, Jul 21 2013

LINKS

Alois P. Heinz, Antidiagonals n = 0..25, flattened

Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez, Olga Basova, Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions, Linear Algebra and its Applications, Volume 530, 1 October 2017, p. 414-444.

EXAMPLE

A(4,0) = 1: [()].

A(3,1) = 4: [(3),(0)], [(3),(1),(0)], [(3),(2),(0)], [(3),(2),(1),(0)].

A(2,2) = 5: [(2,2),(0,2),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)].

A(1,3) = 1: [(1,1,1),(0,1,1),(0,0,1),(0,0,0)].

A(0,4) = 1: [(0,0,0,0)].

Square array A(n,k) begins:

1,  1,    1,      1,        1,           1, ...

1,  1,    1,      1,        1,           1, ...

1,  2,    5,     14,       42,         132, ...

1,  4,   29,    290,     3532,       49100, ...

1,  8,  185,   7680,   456033,    34426812, ...

1, 16, 1257, 238636, 77767945, 36470203156, ...

MAPLE

b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(

      i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))

    end:

A:= (n, k)-> `if`(k=0, 1, b([n$k])):

seq(seq(A(n, d-n), n=0..d), d=0..10);

MATHEMATICA

b[l_] := b[l] = If[ l[[-1]] == 0, 1, Sum[ Sum[ b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i-1]]], l[[i]]-1}], {i, 1, Length[l]}]]; a[n_, k_] := If[k == 0, 1, b[Array[n&, k]]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000012, A011782, A059231, A227580, A227583, A227596, A227597, A227598, A227599, A227600, A227601.

Rows n=0+1, 2-10 give: A000012, A000108(k+1), A181197(k+2), A227584, A227602, A227603, A227604, A227605, A227606, A227607.

Main diagonal gives: A227579.

Cf. A060854 (steps decrement one component by 1), A262809, A263159.

Sequence in context: A241194 A008326 A181196 * A181783 A121395 A275377

Adjacent sequences:  A227575 A227576 A227577 * A227579 A227580 A227581

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 17:22 EST 2018. Contains 299624 sequences. (Running on oeis4.)