login
A274657
Numerators of the coefficients of z^n/n! for the expansion of hypergeometric([1/2,1/2],[1];z).
1
1, 1, 9, 75, 3675, 59535, 2401245, 57972915, 13043905875, 418854310875, 30241281245175, 1212400457192925, 213786613951685775, 10278202593831046875, 1070401384414690453125, 60013837619516978071875, 57673297952355815927071875, 3694483615889146090857721875
OFFSET
0,3
COMMENTS
The denominators are given in A123854.
The main entry is A038534 (with A056982) where comments and references are given.
The complete elliptic integral of the first kind K = K(k) is (Pi/2)*hypergeometric([1/2,1/2],[1];k^2). This is also the real quarter period K of elliptic functions.
FORMULA
a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n) = (risefac(1/2,n)^2)/n! = ((2*n)!^2)/((n!^3)*2^(4*n)), with the rising factorial risefac (Pochhammer symbol).
E.g.f. for r(n) is hypergeometric([1/2,1/2],[1];z).
EXAMPLE
The first rationals r(n) are: 1, 1/4, 9/32, 75/128, 3675/2048, 59535/8192, 2401245/65536, 57972915/262144, 13043905875/8388608, 418854310875/33554432, 30241281245175/268435456, ...
MATHEMATICA
With[{n = 20}, Numerator[CoefficientList[Series[2 EllipticK[x]/Pi, {x, 0, n}], x] Range[0, n]!]] (* Jan Mangaldan, Jan 04 2017 *)
Numerator[Table[Gamma[n + 1/2]^2/(Pi Gamma[n + 1]), {n, 0, 20}]] (* Li Han, Feb 05 2021 *)
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 07 2016
STATUS
approved