login
A274159
Number of integers in n-th generation of tree T(3^(-1/3)) defined in Comments.
2
1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 12, 16, 18, 23, 28, 33, 41, 49, 61, 72, 89, 107, 130, 159, 191, 234, 283, 345, 418, 507, 617, 747, 910, 1103, 1340, 1629, 1976, 2402, 2914, 3542, 4300, 5223, 6344, 7701, 9359, 11361, 13801, 16761, 20353, 24725, 30021, 36468, 44285, 53788, 65328
OFFSET
0,7
COMMENTS
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
See A274142 for a guide to related sequences.
EXAMPLE
If r = 3^(-1/3), then g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 1.
MAPLE
A274159 := proc(r)
local gs, n, gs2, el, a ;
gs := [1] ;
for n from 2 do
gs2 := [] ;
for el in gs do
gs2 := [op(gs2), el+1, r*el] ;
end do:
gs := gs2 ;
a := 0 ;
for el in gs do
if type(el, 'integer') then
a := a+1 :
end if;
end do:
print(n, a) ;
end do:
end proc:
A274159(1/root[3](3)) ; # R. J. Mathar, Jun 20 2016
MATHEMATICA
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]];
u = Table[t[[k]] /. x -> 3^(-1/3), {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
CROSSREFS
Cf. A274142.
Sequence in context: A238210 A120170 A136421 * A239905 A016085 A018122
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 12 2016
EXTENSIONS
a(15)-a(18) from R. J. Mathar, Jun 20 2016
More terms from Kenny Lau, Jul 04 2016
STATUS
approved