The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136421 a(n) = floor((x^n - (1-x)^n)/sqrt(2)+ 1/2) where x = (sqrt(2)+1)/2. 1
 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17, 21, 25, 31, 37, 44, 54, 65, 78, 94, 114, 138, 166, 200, 242, 292, 352, 425, 514, 620, 748, 903, 1090, 1316, 1589, 1918, 2315, 2794, 3373, 4072, 4915, 5933, 7162, 8645, 10436, 12597, 15206, 18355, 22156, 26745 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS This is analogous to the closed form of the formula for the n-th Fibonacci number. Even before truncation, these numbers are rational and the decimal part always ends in 5. For x=(sqrt(2)+1)/2, a(n)/a(n-1) -> x. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA The general form of x is (sqrt(r)+1)/2, r=1,2,3... a(n) = floor(b(n)/2^n) where b(n) = A052542(n) + 2^(n-1) = 4*b(n-1) - 3*b(n-2) - 2*b(n-3). - R. J. Mathar, Sep 10 2016 MATHEMATICA Table[Floor[Fibonacci[n, 2]/2^(n-1) +1/2], {n, 1, 50}] (* G. C. Greubel, Oct 02 2018 *) PROG (PARI) fib(n, r) = x=(sqrt(r)+1)/2; floor((x^n-(1-x)^n)/sqrt(r)+.5); g(n, r) = for(m=1, n, print1(fib(m, r)", ")); g(30, 2) (Magma) [Floor(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2^n*Sqrt(2))+ 1/2): n in [2..50]]; // G. C. Greubel, Oct 02 2018 CROSSREFS Sequence in context: A018049 A238210 A120170 * A274159 A239905 A016085 Adjacent sequences: A136418 A136419 A136420 * A136422 A136423 A136424 KEYWORD nonn AUTHOR Cino Hilliard, Apr 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 2 11:35 EST 2023. Contains 360011 sequences. (Running on oeis4.)