login
A136424
a(n) = floor((x^n - (1-x)^n) / (2x-1) +.5) where x = (sqrt(6)+1)/2 (and hence 2x-1 = sqrt(6)).
0
1, 1, 2, 4, 6, 11, 19, 32, 55, 95, 164, 283, 488, 842, 1451, 2503, 4318, 7447, 12844, 22152, 38207, 65898, 113657, 196029, 338101, 583137, 1005763, 1734685, 2991888, 5160244, 8900104, 15350410, 26475540, 45663552, 78757977, 135837417
OFFSET
1,3
COMMENTS
This is analogous to the closed form of the formula for the n-th Fibonacci number. Even before truncation, these numbers are rational and the decimal part always ends in 5. For x=(sqrt(6)+1)/2, a(n)/a(n-1) -> x.
FORMULA
The general form of x is (sqrt(r)+1)/2, r=1,2,3..
a(n) = floor(b(n)/2^n) where b(n) = 2*A002532(n)+2^(n-1). - R. J. Mathar, Sep 10 2016
PROG
(PARI) g(n, r) = for(m=1, n, print1(fib(m, r)", ")) fib(n, r) = x=(sqrt(r)+1)/2; floor((x^n-(1-x)^n)/sqrt(r)+.5)
CROSSREFS
Sequence in context: A224957 A115992 A115993 * A116732 A367736 A048239
KEYWORD
nonn
AUTHOR
Cino Hilliard, Apr 01 2008
EXTENSIONS
Definition corrected by Frederic van der Plancke (fplancke(AT)hotmail.com), May 08 2009
STATUS
approved