The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273620 Table read by ascending antidiagonals: T(n, k) = floor(sqrt(k) * floor(n/sqrt(k) + 1)), for n >= 1, k >= 1. 2
 2, 3, 1, 4, 2, 1, 5, 4, 3, 2, 6, 4, 3, 4, 2, 7, 5, 5, 4, 2, 2, 8, 7, 5, 6, 4, 2, 2, 9, 7, 6, 6, 4, 4, 2, 2, 10, 8, 8, 8, 6, 4, 5, 2, 3, 11, 9, 8, 8, 6, 7, 5, 5, 3, 3, 12, 11, 10, 10, 8, 7, 5, 5, 6, 3, 3, 13, 11, 10, 10, 8, 7, 7, 5, 6, 3, 3, 3, 14, 12, 12, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A261865(n) gives the least k such that T(n, k) = n. From Peter Kagey, Apr 07 2020: (Start) T(n, k) is the floor of the least multiple of sqrt(k) that is greater than n. T(n, k^2) is a multiple of k. For squarefree k > 1, T(n,k) = n if and only if n appears in column k. A327952(n) is the number of appearances of n in row n. (End) LINKS Peter Kagey, Table of n, a(n) for n = 1..10000 Peter Kagey, A bitmap representing the parity of the first 1023 rows and columns of the sequence. Black pixels represent even values, and white pixels represent odd values. FORMULA T(n, 1) = n + 1. T(n, k) = floor(sqrt(k) * floor(n/sqrt(k) + 1)). - Peter Kagey, Apr 07 2020 EXAMPLE A261865(1) = T(1, 1) = floor(sqrt(1) * floor(1/sqrt(1) + 1)) = 2 A261865(2) = T(2, 1) = floor(sqrt(1) * floor(1/sqrt(2) + 1)) = 1 A261865(3) = T(1, 2) = floor(sqrt(2) * floor(2/sqrt(1) + 1)) = 4 Table begins: n\k |  1  2  3  4  5  6  7  8  9 10 ----+------------------------------    1|  2  1  1  2  2  2  2  2  3  3    2|  3  2  3  4  2  2  2  2  3  3    3|  4  4  3  4  4  4  5  5  6  3    4|  5  4  5  6  4  4  5  5  6  6    5|  6  5  5  6  6  7  5  5  6  6    6|  7  7  6  8  6  7  7  8  9  6    7|  8  7  8  8  8  7  7  8  9  9    8|  9  8  8 10  8  9 10  8  9  9    9| 10  9 10 10 11  9 10 11 12  9   10| 11 11 10 12 11 12 10 11 12 12 MATHEMATICA Table[Function[j, Floor[Sqrt@ k Floor[j/Sqrt@ k + 1]]][n - k + 1], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, May 27 2016 *) PROG (Haskell) a273620T :: Integral a => a -> a -> a a273620T n k = floor \$ sqrt k' * c where   (n', k') = (fromIntegral n, fromIntegral k)   c = fromIntegral \$ floor \$ n' / sqrt k' + 1 CROSSREFS The first column consists of entries in A001951, the second column of entries in A022838, the fourth of entries in A022839, and the fifth of entries in A022840. Cf. A261865, A327952. Sequence in context: A087088 A336811 A255250 * A104705 A143361 A152547 Adjacent sequences:  A273617 A273618 A273619 * A273621 A273622 A273623 KEYWORD nonn,tabl AUTHOR Peter Kagey, May 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 12:41 EDT 2022. Contains 354883 sequences. (Running on oeis4.)