OFFSET
1,1
COMMENTS
A261865(n) gives the least k such that T(n, k) = n.
From Peter Kagey, Apr 07 2020: (Start)
T(n, k) is the floor of the least multiple of sqrt(k) that is greater than n.
T(n, k^2) is a multiple of k.
For squarefree k > 1, T(n,k) = n if and only if n appears in column k.
A327952(n) is the number of appearances of n in row n.
(End)
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10000
Peter Kagey, A bitmap representing the parity of the first 1023 rows and columns of the sequence. Black pixels represent even values, and white pixels represent odd values.
FORMULA
T(n, 1) = n + 1.
T(n, k) = floor(sqrt(k) * floor(n/sqrt(k) + 1)). - Peter Kagey, Apr 07 2020
EXAMPLE
A261865(1) = T(1, 1) = floor(sqrt(1) * floor(1/sqrt(1) + 1)) = 2
A261865(2) = T(2, 1) = floor(sqrt(1) * floor(1/sqrt(2) + 1)) = 1
A261865(3) = T(1, 2) = floor(sqrt(2) * floor(2/sqrt(1) + 1)) = 4
Table begins:
n\k | 1 2 3 4 5 6 7 8 9 10
----+------------------------------
1| 2 1 1 2 2 2 2 2 3 3
2| 3 2 3 4 2 2 2 2 3 3
3| 4 4 3 4 4 4 5 5 6 3
4| 5 4 5 6 4 4 5 5 6 6
5| 6 5 5 6 6 7 5 5 6 6
6| 7 7 6 8 6 7 7 8 9 6
7| 8 7 8 8 8 7 7 8 9 9
8| 9 8 8 10 8 9 10 8 9 9
9| 10 9 10 10 11 9 10 11 12 9
10| 11 11 10 12 11 12 10 11 12 12
MATHEMATICA
Table[Function[j, Floor[Sqrt@ k Floor[j/Sqrt@ k + 1]]][n - k + 1], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, May 27 2016 *)
PROG
(Haskell)
a273620T :: Integral a => a -> a -> a
a273620T n k = floor $ sqrt k' * c where
(n', k') = (fromIntegral n, fromIntegral k)
c = fromIntegral $ floor $ n' / sqrt k' + 1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, May 26 2016
STATUS
approved