OFFSET
1,2
COMMENTS
If all the terms in the sequence are reduced by one and then all zeros are removed, the result is the same as the original sequence.
From Benoit Cloitre, Mar 07 2009: (Start)
To construct the sequence:
Step 1: start from a sequence of 1's and leave two undefined places between every pair of 1's giving: 1,(),(),1,(),(),1,(),(),1,(),(),1,(),(),1,...
Step 2: replace the first undefined place with a 2 and henceforth leave two undefined places between two 2's giving: 1,2,(),1,(),2,1,(),(),1,2,(),1,(),2,1,...
Step 3: replace the first undefined place with a 3 and henceforth leave two undefined places between two 3's giving: 1,2,3,1,(),2,1,(),3,1,2,(),1,(),2,1,...
Step 4: replace the first undefined place with a 4 and leave 2 undefined places between two 4's giving: 1,2,3,1,4,2,1,(),3,1,2,(),1,4,2,1,... Iterating the process indefinitely yields the sequence: 1,2,3,1,4,2,1,5,3,1,2,6,1,4,2,1,... (End)
From Peter Munn, Jul 10 2020: (Start)
For k >= 1, the number k occurs in a pattern with fundamental period 3^k, and with points of mirror symmetry at intervals of (3^k)/2. Those points have an extrapolated common origin (for k >= 1) at an offset 1.5 to the left of the sequence's initial "1". The snake format illustration in the example section may be useful for visualizing this.
(End)
For k >= 1, k first occurs at position A061419(k) and its k-th occurrence is at position A083045(k-1). - Peter Munn, Aug 23 2020
(a(n)) is the unique fixed point of the two-block substitution a,b -> 1,a+1,b+1, where a,b are natural numbers. - Michel Dekking, Sep 26 2022
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
FORMULA
a(n) = 1 when n == 1 (mod 3), otherwise a(n) = a(n-ceiling(n/3)) + 1.
From Peter Munn, Aug 22 2020: (Start)
For m >= 0, a(3*m+1) = 1; a(3*m+2) = a(2*m+1) + 1; a(3*m+3) = a(2*m+2) + 1.
For n >= 1, the following identities hold.
a(n) = A335933(2*n+1).
A051064(n+1) = min(a(n), a(n+1)).
A254046(n+2) = min(a(n), a(n+2)). (End)
EXAMPLE
From Peter Munn, Jul 03 2020: (Start)
Listing the terms in a snake format (with period 27) illustrates periodic and mirror symmetries. Horizontal lines mark points of mirror symmetry for 3's. Vertical lines mark further points of mirror symmetry for 2's. 79 terms are shown. (Referred to the extrapolated common origin of periodic mirror symmetry, the initial term is at offset 1.5 and the last shown is at offset 79.5 = 3^4 - 1.5.) Observe also mirror symmetry of 4's (seen vertically).
1 2 3 1 4 2 1 5 3 1 2 6
| | 1 --
1 2 3 1 5 2 1 7 3 1 2 4
_ 4
8
1 2 3 1 6 2 1 4 3 1 2 5
| | 1 --
1 2 3 1 7 2 1 4 3 1 2 9
_ 5
4
1 2 3 1 6 2 1 10 3 1 2 4
| | 1 --
1 2 3 1 4 2 1 8 3 1 2 5
(End)
From Peter Munn, Aug 22 2020: (Start)
The start of the sequence is shown below in conjunction with related sequences, aligning their points of mirror symmetry. The longer, and shorter, vertical lines indicate points of mirror symmetry for terms valued less than 4, and less than 3, respectively. Note each term of A051064 is the minimum of two terms displayed nearest below it, and each term of A254046 is the minimum of the two terms displayed diagonally above it.
| | |
A051064:| 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 1 2
| | | | | | |
[a(n)]: | 1 2 3 1 4 2 1 5 3 1 2 6 1 4 2 1 3 7 1 2 5 1 3 2 1 4 8 1 2 3
| | | | | | |
A254046:|1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1
| | |
(End)
MATHEMATICA
Module[{b}, b[_] = 0;
a[n_] := With[{t = A163491[n]}, b[t] = b[t] + 1]];
Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Enrico T. Federighi (rico125162(AT)aol.com), Aug 08 2003
EXTENSIONS
More terms from Paul D. Hanna, Aug 21 2003
Offset changed by M. F. Hasler (following remarks by Peter Munn), Jul 13 2020
Thanks to Allan C. Wechsler for suggesting the new name. - N. J. A. Sloane, Jul 14 2020
STATUS
approved