login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271974
Let p = prime(n): if p mod 4 == 1 then a(n) = (1+p)/2 otherwise if p mod 4 == 3 then a(n) = (1-p)/2.
2
-1, 3, -3, -5, 7, 9, -9, -11, 15, -15, 19, 21, -21, -23, 27, -29, 31, -33, -35, 37, -39, -41, 45, 49, 51, -51, -53, 55, 57, -63, -65, 69, -69, 75, -75, 79, -81, -83, 87, -89, 91, -95, 97, 99, -99, -105, -111, -113, 115, 117, -119, 121, -125, 129, -131, 135, -135, 139, 141, -141, 147, -153, -155, 157, 159, -165, 169, -173, 175, 177, -179, -183, 187, -189, -191, 195, 199, 201, 205
OFFSET
2,2
LINKS
Dimitris Valianatos, Comments on this sequence, Apr 25 2016
FORMULA
Product_{n>2} (1-1/a(n)) = (1-1/3)*(1-1/(-3))*(1-1/(-5))*(1-1/7)*(1-1/9)*(1-1/(-9))*(1-1/(-11))*(1-1/15)*(1-1/(-15))*... = (2/3)*(4/3)*(6/5)*(6/7)*(8/9)*(10/9)*(12/11)*(14/15)*(16/15)*... = 1.
So Product_{n>2} (1-a(n)^(-1)) = Product_{n>2}(1-a(n)^(-1))^(-1) = (Product_{n>2}(1-a(n)^(-1)))^k = 1, for every k.
Sum_ {n>2} log(1-1/a(n)) = 0.
EXAMPLE
For n=11, prime(11) = 31, 31 mod 4 == 3 so a(11) = (1-31)/2 = -15.
MATHEMATICA
If[Mod[#, 4]==1, (1+#)/2, (1-#)/2]&/@Prime[Range[2, 80]] (* Harvey P. Dale, May 09 2017 *)
PROG
(PARI) {forstep(n=3, 1000, 2, if(isprime(n), if(n%4==1, p=(1+n)/2, p=(1-n)/2); print1(n"-> "p", "))); }
CROSSREFS
Sequence in context: A278166 A293990 A247130 * A050824 A323703 A333147
KEYWORD
sign
AUTHOR
Dimitris Valianatos, Apr 23 2016
EXTENSIONS
Corrected and extended by Harvey P. Dale, May 09 2017
STATUS
approved