OFFSET
1,2
FORMULA
Sum_((mu(n))*1/a(n)),mu(n)=moebius(n) {n >= 1, n not divisible by 2 or 3}=1 + (-1)*1/(3) + (-1)*1/(-3) + (-1)*1/(-5) + (-1)*1/(7) + (-1)*1/(9) + (-1)*1/(-9) + (-1)*1/(-11) + (-1)*1/(15) + (-1)*1/(-15) + (1)*1/(-9) + (-1)*1/(19)+ (-1)*1/(21) + (-1)*1/(-21) + (-1)*1/(-23) + (-1)*1/(27) + (1)*1/(-15)*... = 1.
PROG
(PARI) {
zv=0.0;
forstep(n=1, 200, 2,
if(n%3<>0,
mb=moebius(n);
if(mb<>0,
fa=factorint(n);
dv=fa[, 1]; pl=#dv; ml=fa[, 2];
g=1;
for(i=1, pl,
ds=dv[i]; v=1;
if(ds%4==1, v*=(1+ds)\2, v*=(1-ds)\2);
for(k=1, ml[i], g*=v)
);
zv+=mb/g;
print1(g", ")
)
)
);
print(); print(zv);
}
(PARI) lista(nn) = {forstep (n=1, nn, 2, if (issquarefree(n) && (n % 3), f = factor(n); for (k=1, #f~, if (f[k, 1] == 2, f[k, 1] = 0, if (f[k, 1] % 4 == 1, f[k, 1] = (1+f[k, 1])/2, f[k, 1] = (1-f[k, 1])/2)); ); print1(factorback(f), ", "); ); ); } \\ Michel Marcus, May 02 2016
CROSSREFS
KEYWORD
sign
AUTHOR
Dimitris Valianatos, Apr 30 2016
STATUS
approved