login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247130
a(n) = A272295(m) where m is the n-th integer that is both squarefree and not divisible by 3.
0
1, 3, -3, -5, 7, 9, -9, -11, 15, -15, -9, 19, 21, -21, -23, 27, -15, -29, 31, 21, -33, -35, 37, 15, -39, -41, 27, 45, -21, -27, 49, 51, -51, -53, 55, 57, -33, -27, -63, -65, 27, 69, -69, -35, 45, 75, -75, -45, 79, 33, -81, -83, 87, -89, 91, 57, -45, -95, 97, 99, -99
OFFSET
1,2
FORMULA
Sum_((mu(n))*1/a(n)),mu(n)=moebius(n) {n >= 1, n not divisible by 2 or 3}=1 + (-1)*1/(3) + (-1)*1/(-3) + (-1)*1/(-5) + (-1)*1/(7) + (-1)*1/(9) + (-1)*1/(-9) + (-1)*1/(-11) + (-1)*1/(15) + (-1)*1/(-15) + (1)*1/(-9) + (-1)*1/(19)+ (-1)*1/(21) + (-1)*1/(-21) + (-1)*1/(-23) + (-1)*1/(27) + (1)*1/(-15)*... = 1.
PROG
(PARI) {
zv=0.0;
forstep(n=1, 200, 2,
if(n%3<>0,
mb=moebius(n);
if(mb<>0,
fa=factorint(n);
dv=fa[, 1]; pl=#dv; ml=fa[, 2];
g=1;
for(i=1, pl,
ds=dv[i]; v=1;
if(ds%4==1, v*=(1+ds)\2, v*=(1-ds)\2);
for(k=1, ml[i], g*=v)
);
zv+=mb/g;
print1(g", ")
)
)
);
print(); print(zv);
}
(PARI) lista(nn) = {forstep (n=1, nn, 2, if (issquarefree(n) && (n % 3), f = factor(n); for (k=1, #f~, if (f[k, 1] == 2, f[k, 1] = 0, if (f[k, 1] % 4 == 1, f[k, 1] = (1+f[k, 1])/2, f[k, 1] = (1-f[k, 1])/2)); ); print1(factorback(f), ", "); ); ); } \\ Michel Marcus, May 02 2016
CROSSREFS
Subsequence of A272295.
Sequence in context: A171957 A278166 A293990 * A271974 A050824 A323703
KEYWORD
sign
AUTHOR
Dimitris Valianatos, Apr 30 2016
STATUS
approved