login
A271975
a(n) = G_n(18), where G is the Goodstein function defined in A266201.
2
18, 7625597484989, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097
OFFSET
0,1
EXAMPLE
G_1(18) = B_2(18)-1 = B_2(2^2^2+2)-1 = 3^3^3+3-1 = 7625597484989;
G_2(18) = B_3(3^3^3+2)-1 = 4^4^4+2-1 has 154 digits;
G_3(18) = B_4(4^4^4+1)-1 = 5^5^5 has 2184 digits;
G_4(18) = B_5(5^5^5)-1 = 6^6^6-1 = has 36305 digits.
CROSSREFS
Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A222117: G_n(15), A059933: G_n(16), A271562: G_n(17), A211378: G_n(19), A266201: G_n(n).
Sequence in context: A144838 A013886 A259327 * A186729 A340650 A226373
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 24 2016
STATUS
approved