login
A271799
Prime numbers whose reversal is a product of 3 distinct primes.
2
223, 269, 281, 457, 499, 839, 1049, 1289, 1373, 1459, 1543, 1609, 2003, 2011, 2017, 2027, 2029, 2053, 2081, 2087, 2213, 2221, 2237, 2239, 2243, 2267, 2269, 2293, 2297, 2441, 2459, 2609, 2657, 2659, 2693, 2699, 2803, 2833, 2851, 2857, 2879, 2887, 2897, 3449, 3557
OFFSET
1,1
COMMENTS
Each of the three distinct primes must have an exponent of one, i.e., the number of distinct primes and also the number of primes counted with multiplicity must equal three. - Harvey P. Dale, Sep 26 2024
MATHEMATICA
Select[Range[4000], PrimeQ[#] && Transpose[FactorInteger[IntegerReverse[#]]][[2]] == {1, 1, 1} &] (* Tanya Khovanova, Mar 16 2021 *)
Select[Prime[Range[500]], PrimeNu[IntegerReverse[#]]==PrimeOmega[IntegerReverse[#]]==3&] (* Harvey P. Dale, Sep 26 2024 *)
CROSSREFS
Sequence in context: A359449 A098591 A138665 * A152824 A142386 A102950
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Apr 14 2016
STATUS
approved