login
A152824
Numbers such that each digit leaves the same nonzero remainder when each is divided into the number.
4
223, 289, 337, 379, 433, 469, 477, 649, 673, 2227, 2233, 2263, 2269, 2323, 2437, 2449, 2623, 2629, 2773, 2833, 3223, 3277, 3349, 3433, 3493, 3889, 4249, 4333, 4393, 4429, 4633, 4873, 4933, 4969, 6223, 6229, 6433, 6637, 6679, 6763, 6949, 7267, 7477, 7939
OFFSET
1,1
EXAMPLE
289 == 1 (mod 2) == 1 (mod 8) == 1 (mod 9), so 289 is a member.
MATHEMATICA
fQ[n_] := Block[{a = Union@ Mod[n, IntegerDigits@n]}, a != {0} && Length@ a == 1]; Select[Range@ 4248, fQ@# &] (* Robert G. Wilson v *)
PROG
(PARI) is(n)=my(d=Set(digits(n)), t); if(#d<2 || d[1]==0, return(0)); t=n%d[1]; if(t==0, return(0)); for(i=2, #d, if(n%d[i]!=t, return(0))); 1 \\ Charles R Greathouse IV, Feb 15 2017
CROSSREFS
Subsequence of A052382.
Sequence in context: A098591 A138665 A271799 * A142386 A102950 A143801
KEYWORD
nonn,base,easy
AUTHOR
J. M. Bergot, Dec 13 2008
EXTENSIONS
Corrected and extended by Joshua Zucker and Robert G. Wilson v, Dec 14 2008
Corrected and extended by Joshua Zucker, Dec 14 2008
STATUS
approved