login
A138665
Primes of the form 2*p(k)+3*p(k+1)+4*p(k+2) for some k, where p(k)=A000040(k).
1
223, 257, 337, 439, 569, 607, 677, 821, 1229, 1471, 1607, 1999, 2113, 2417, 2459, 3061, 3251, 3463, 3917, 4003, 4243, 4673, 4951, 5387, 5521, 5839, 5927, 6551, 8867, 9133, 9587, 10061, 10909, 11057, 11257, 11383, 11597, 11677, 11909, 12377, 14051, 14533
OFFSET
1,1
LINKS
EXAMPLE
223=2*19+3*23+4*29,
569=2*59+3*61+4*67,
71011=2*7879+3*7883+4*7901,
940483=2*104479+3*104491+4*104513,
11694107=2*1299341+3*1299343+4*1299349,
139372099=2*15485773+3*15485783+4*139372099,
1614810061=2*179423329+3*179423333+4*179423351,
18342658199=2*2038073129+3*2038073131+4*2038073137,
205215855233=2*22801761659+3*22801761677+4*22801761721.
Apparently there are infinitely many such primes.
MATHEMATICA
Select[2#[[1]]+3#[[2]]+4#[[3]]&/@Partition[Prime[Range[250]], 3, 1], PrimeQ] (* Harvey P. Dale, Jul 31 2013 *)
CROSSREFS
Cf. A000040.
Sequence in context: A345785 A359449 A098591 * A271799 A152824 A142386
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 26 2008
EXTENSIONS
Corrected by Harvey P. Dale, Jul 31 2013
STATUS
approved