OFFSET
1,1
COMMENTS
Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
..8....62....222.....572.....1220......2298......3962.......6392.......9792
.10...154....804....2692.....7030.....15630.....31024......56584......96642
.12...376...2878...12570....40288....105892....242226.....499798.....952180
.14...902..10192...58280...229754....714874...1886252....4405772....9366790
.16..2142..35812..268704..1304934...4811578..14654952...38768412...92013754
.18..5040.125012.1233046..7385898..32300252.113629480..340600002..902743646
.20.11786.434110.5636046.41679780.216337084.879470154.2988094770.8846649136
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 5*a(n-1) -5*a(n-2) -8*a(n-3) +12*a(n-4)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: [order 7]
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 - n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 - 4*n^2 + n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 - 8*n^3 + n^2 + 3*n - 2
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 - 12*n^4 - 5*n^3 + 18*n^2 - 15*n + 4
EXAMPLE
Some solutions for n=6 k=4
..1. .0. .3. .0. .3. .2. .1. .1. .0. .3. .2. .3. .2. .1. .1. .2
..3. .2. .2. .2. .0. .4. .2. .2. .3. .4. .0. .0. .0. .4. .1. .2
..0. .0. .3. .4. .3. .2. .3. .3. .1. .4. .4. .3. .3. .3. .2. .3
..4. .1. .0. .3. .1. .0. .3. .1. .0. .3. .1. .1. .3. .0. .1. .1
..3. .3. .2. .4. .3. .4. .0. .0. .1. .4. .2. .3. .2. .3. .2. .0
..1. .3. .1. .3. .0. .4. .1. .3. .1. .0. .3. .3. .0. .3. .0. .0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved