OFFSET
1,1
COMMENTS
Table starts
..2....3......4.......5........6.........7.........8..........9.........10
..4....9.....16......25.......36........49........64.........81........100
..5...21.....54.....110......195.......315.......476........684........945
..6...47....176.....470.....1030......1981......3472.......5676.......8790
..7..103....564....1980.....5375.....12327.....25088......46704......81135
..8..223...1790....8274....27854.....76237....180292.....382404.....745548
..9..479...5646...34396...143695....469623...1291052....3121008....6830757
.10.1023..17732..142474...738990...2884909...9222184...25415028...62455218
.11.2175..55512..588596..3791775..17686215..65755592..206617680..570177387
.12.4607.173354.2426738.19421854.108259885.468196540.1677626052.5199327816
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -8*a(n-2) +4*a(n-3) for n>4
k=3: a(n) = 9*a(n-1) -29*a(n-2) +39*a(n-3) -18*a(n-4) for n>5
k=4: a(n) = 14*a(n-1) -75*a(n-2) +190*a(n-3) -224*a(n-4) +96*a(n-5) for n>6
k=5: [order 6] for n>7
k=6: [order 7] for n>8
k=7: [order 8] for n>9
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + (5/2)*n^2 + (3/2)*n
n=4: a(n) = n^4 + (17/6)*n^3 + 2*n^2 + (1/6)*n
n=5: a(n) = n^5 + (37/12)*n^4 + (5/2)*n^3 + (5/12)*n^2
n=6: a(n) = n^6 + (197/60)*n^5 + 3*n^4 + (3/4)*n^3 - (1/30)*n
n=7: a(n) = n^7 + (69/20)*n^6 + (7/2)*n^5 + (7/6)*n^4 - (7/60)*n^2
EXAMPLE
Some solutions for n=6 k=4
..3....3....1....0....4....0....3....2....4....2....4....4....4....1....0....1
..1....4....4....2....4....2....1....0....3....3....2....3....1....4....1....2
..0....2....4....0....2....0....0....3....4....2....1....0....0....3....3....0
..2....0....3....4....2....3....1....2....4....2....2....1....3....2....0....2
..4....2....1....0....1....1....4....3....1....1....0....4....0....1....3....0
..4....1....0....4....2....2....4....2....0....1....2....4....2....4....2....3
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 12 2016
STATUS
approved