OFFSET
1,1
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Robert Israel, Maple-assisted proof for empirical recursion
FORMULA
Empirical: a(n) = 17*a(n-1) - 91*a(n-2) + 83*a(n-3) + 542*a(n-4) - 550*a(n-5) - 1651*a(n-6) - 745*a(n-7).
Empirical g.f.: 2*x*(3 - 33*x + 72*x^2 + 214*x^3 - 420*x^4 - 922*x^5 - 393*x^6) / ((1 - 5*x)*(1 - 12*x + 31*x^2 + 72*x^3 - 182*x^4 - 360*x^5 - 149*x^6)). - Colin Barker, Jan 24 2019
Empirical recursion verified - see link. - Robert Israel, Jan 24 2019
EXAMPLE
Some solutions for n=6:
..4. .4. .1. .3. .0. .3. .5. .1. .1. .5. .5. .1. .3. .0. .2. .0
..3. .5. .5. .2. .3. .1. .1. .3. .1. .5. .3. .2. .2. .0. .5. .3
..4. .3. .3. .1. .3. .5. .2. .2. .3. .2. .4. .1. .5. .2. .4. .5
..2. .2. .1. .3. .2. .1. .1. .0. .0. .5. .3. .4. .2. .3. .1. .0
..3. .5. .2. .0. .1. .3. .4. .4. .3. .2. .1. .0. .2. .1. .4. .4
..0. .1. .5. .3. .2. .3. .1. .4. .5. .2. .2. .2. .4. .3. .1. .4
MAPLE
T:= Matrix(42, 42):
for x from 0 to 5 do
for v from 0 to 6 do
i:= 1 + x + 6*v;
for y in {$0..5} minus {x} do
T[i, 1+y+6*v]:= 1;
od:
if abs(x-v) > 1 or v=6 then T[i, 1+x+6*x]:= 1 fi
od od:
u:= Vector([0$36, 1$6]): v:= Vector(42, 1):
Tv[1]:= v:
for n from 2 to 50 do Tv[n]:= T . Tv[n-1] od:
seq(u^%T . Tv[n], n=1..50); # Robert Israel, Jan 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved