login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269021
Number of permutations of [2n] containing an increasing subsequence of length n.
3
1, 2, 23, 588, 24553, 1438112, 108469917, 9996042284, 1086997811325, 136102249609224, 19269396089593156, 3042212958893941456, 529708789768374664407, 100813134967124531098768, 20816198414187782633783462, 4634136282168760818748363080
OFFSET
0,2
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..41 (terms 0..30 from Alois P. Heinz)
M. Kauers and C. Koutschan, Some D-finite and some possibly D-finite sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023.
FORMULA
a(n) = A214152(2n,n).
a(n) = (2n)! - A269042(n).
a(n) ~ 16^n * (n-1)! / (Pi * exp(2)). - Vaclav Kotesovec, Mar 27 2016
Conjectured recurrence: -64*(1 + n)^2*(2 + n)^2*(3 + n)*(1 + 2*n)^2*(3 + 2*n)^2*(5 + 2*n)^2*(549760 + 3266000*n + 7264534*n^2 + 8663374*n^3 + 6333869*n^4 + 3012795*n^5 + 952323*n^6 + 198469*n^7 + 26156*n^8 + 1968*n^9 + 64*n^10)*a(n) + 16*(2 + n)^2*(3 + n)*(3 + 2*n)^2*(5 + 2*n)^2*(-5543040 - 487964*n + 78563984*n^2 + 229526554*n^3 + 325846005*n^4 + 284054698*n^5 + 165789363*n^6 + 67385886*n^7 + 19359535*n^8 + 3917758*n^9 + 545913*n^10 + 49788*n^11 + 2672*n^12 + 64*n^13)*a(n+1) - 4*(3 + n)*(5 + 2*n)^2*(-250467360 - 946158512*n - 562569136*n^2 + 3271711596*n^3 + 9313604242*n^4 + 12741784568*n^5 + 11118771121*n^6 + 6753094929*n^7 + 2966908118*n^8 + 959068672*n^9 + 228837227*n^10 + 39928763*n^11 + 4969164*n^12 + 419248*n^13 + 21568*n^14 + 512*n^15)*a(n+2) + 2*(-1300242000 - 6360099840*n - 10812498240*n^2 - 778719870*n^3 + 27672902302*n^4 + 55047935941*n^5 + 60004107039*n^6 + 43766004538*n^7 + 22820793074*n^8 + 8747566435*n^9 + 2488583381*n^10 + 523718876*n^11 + 80260596*n^12 + 8677944*n^13 + 624800*n^14 + 26752*n^15 + 512*n^16)*a(n+3) - 3*(4 + n)*(8 + 3*n)*(10 + 3*n)*(-15900 - 61278*n - 68928*n^2 + 48699*n^3 + 204716*n^4 + 233810*n^5 + 143536*n^6 + 52389*n^7 + 11324*n^8 + 1328*n^9 + 64*n^10)*a(n+4) = 0. - Manuel Kauers and Christoph Koutschan, Mar 01 2023
EXAMPLE
a(1) = 2: 12, 21.
a(2) = 23: all 4! permutations of {1,2,3,4} with the exception of 4321.
MAPLE
h:= proc(l) (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(
l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n))(nops(l))
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> `if`(n=0, 1, (2*n)!-g(2*n, n-1, [])):
seq(a(n), n=0..16);
MATHEMATICA
h[l_] := Function[n, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]][Length[l]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]];
a[n_] := If[n == 0, 1, (2n)! - g[2n, n-1, {}]];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 17 2016
STATUS
approved