The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269022 Primes p such that sigma(p)/pi(p) is prime. 0
 2, 3, 5, 7, 29, 349, 359, 3079, 70115921, 514274899, 514277977, 11091501632311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponding quotient primes are 3, 2, 2, 2, 3, 5, 5, 7, 17, 19, 19, 29. a(13) > 8.1*10^13 if it exists. Assuming the Riemann Hypothesis, a(13) > 3.27*10^16 (if it exists). - Chai Wah Wu, May 25 2018 LINKS EXAMPLE 7 is in the sequence because sigma(7) = 8, pi(7) = 4 and 8/4 = 2 is a prime. MATHEMATICA Select[Prime[Range[10^6]], ProvablePrimeQ[DivisorSigma[1, #]/PrimePi[#]] &] Select[ (* the terms of A052013 *), PrimeQ[(# + 1)/PrimePi@ #] &] (* Robert G. Wilson v, Mar 16 2016 *) PROG (PARI) is(n)=my(t=(n+1)/primepi(n)); denominator(t)==1 && isprime(t) && isprime(n) \\ Charles R Greathouse IV, Feb 18 2016 (PARI) list(lim)=my(v=List(), n, t); forprime(p=2, lim, t=(p+1)/n++; if(denominator(t)==1 && isprime(t), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 18 2016 CROSSREFS Subsequence of A052013. Cf. A000203, A000720. Sequence in context: A054750 A048404 A052013 * A174536 A054797 A297710 Adjacent sequences:  A269019 A269020 A269021 * A269023 A269024 A269025 KEYWORD nonn,more AUTHOR Soumadeep Ghosh, Feb 17 2016 EXTENSIONS a(9)-a(11) from Charles R Greathouse IV, Feb 18 2016 a(12) from Chai Wah Wu, May 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 04:13 EDT 2020. Contains 333105 sequences. (Running on oeis4.)