This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264402 Triangle read by rows: T(n,k) is the number of partitions of n that have k parts larger than the smallest part (n>=1, k>=0). 4
 1, 2, 2, 1, 3, 2, 2, 4, 1, 4, 5, 2, 2, 8, 4, 1, 4, 9, 7, 2, 3, 12, 10, 4, 1, 4, 14, 15, 7, 2, 2, 17, 20, 12, 4, 1, 6, 18, 27, 17, 7, 2, 2, 23, 33, 26, 12, 4, 1, 4, 24, 44, 35, 19, 7, 2, 4, 27, 51, 49, 28, 12, 4, 1, 5, 30, 64, 63, 41, 19, 7, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS T(n,k) = number of partitions of n in which the 2nd largest part is k (0 if all parts are equal). Example: T(7,2) = 4 because we have [3,2,1,1], [3,2,2], [4,2,1], and [5,2]. The fact that the above two statistics (in Name and in 1st Comment) have the same distribution follows at once by conjugation. - Emeric Deutsch, Dec 11 2015 Row sums yield the partition numbers (A000041). T(n,0) = A000005(n) = number of divisors of n. Sum_{k>=0} k*T(n,k) = A182984(n). LINKS Alois P. Heinz, Rows n = 1..350, flattened FORMULA G.f.: G(t,x) = Sum_{i>=1} (x^i/((1 - x^i)*Product_{j>=i+1}(1-t*x^j))). EXAMPLE T(7,2) = 4 because we have [2,2,1,1,1], [3,2,1,1], [3,3,1], and [4,2,1]. Triangle starts: 1; 2; 2,1; 3,2; 2,4,1; 4,5,2; 2,8,4,1; MAPLE g := sum(x^i/((1-x^i)*(product(1-t*x^j, j = i+1 .. 100))), i = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n to 27 do P[n] := sort(coeff(gser, x, n)) end do: for n to 27 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; `if`(n=0, [1, 0],       `if`(i<1, 0, b(n, i-1) +add((p->[0, p[1]+        expand(p[2]*x^j)])(b(n-i*j, i-1)) , j=1..n/i)))     end: T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n\$2)[2]): seq(T(n), n=1..20);  # Alois P. Heinz, Nov 29 2015 MATHEMATICA b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, b[n, i-1] + Sum[ Function[p, {0, p[[1]] + Expand[p[[2]]*x^j]}][b[n-i*j, i-1]], {j, 1, n/i} ]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n][[2]]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *) CROSSREFS Cf. A000005, A000041, A116685, A182984, A002541. Sequence in context: A112200 A112221 A266697 * A289186 A130816 A109951 Adjacent sequences:  A264399 A264400 A264401 * A264403 A264404 A264405 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Nov 21 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 07:23 EDT 2019. Contains 325216 sequences. (Running on oeis4.)