This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264399 Triangle read by rows: T(n,k) is the number of partitions of n having k parts with even multiplicities. 4
 1, 1, 1, 1, 3, 2, 3, 5, 2, 6, 4, 1, 9, 6, 9, 11, 2, 16, 13, 1, 20, 15, 7, 25, 28, 3, 32, 33, 11, 1, 40, 52, 9, 54, 55, 24, 2, 69, 82, 25, 84, 101, 40, 6, 101, 148, 46, 2, 136, 163, 73, 13, 156, 239, 89, 6, 202, 274, 127, 23, 1, 244, 364, 170, 14, 306, 437, 211, 46, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(n,0) = A055922(n). Row sums give A000041. - Omar E. Pol, Nov 21 2015 LINKS Alois P. Heinz, Rows n = 0..1000, flattened FORMULA G.f.: G(t,x) = Product_{j>=1} ((1 + x^j - x^(2j) + tx^(2j))/(1-x^(2j))). EXAMPLE T(6,1) = 4 because we have [4,1*,1], [3*,3], [2,1*,1,1,1], and [1*,1,1,1,1,1] (parts with even multiplicities are marked). Triangle starts: 1; 1; 1,1; 3; 2,3; 5,2; 6,4,1; MAPLE g := product(1+x^j/(1-x^(2*j))+t*x^(2*j)/(1-x^(2*j)), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 28 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 28 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(       expand(`if`(j>0 and j::even, x, 1)*b(n-i*j, i-1)), j=0..n/i)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n\$2)): seq(T(n), n=0..30);  # Alois P. Heinz, Nov 25 2015 MATHEMATICA b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Expand[If[j>0 && EvenQ[ j], x, 1]*b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 25 2015, after Alois P. Heinz *) PROG (PARI) T(n) = { Vec(prod(k=1, n, (1+x^k-x^(2*k)+y*x^(2*k))/(1-x^(2*k)) + O(x*x^n))) } { my(t=T(10)); for(n=1, #t, print(Vecrev(t[n]))); } \\ Andrew Howroyd, Dec 22 2017 CROSSREFS Cf. A000041, A055922, A264398, A264400. Sequence in context: A227634 A064885 A029618 * A240225 A283893 A112427 Adjacent sequences:  A264396 A264397 A264398 * A264400 A264401 A264402 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Nov 21 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 02:56 EDT 2019. Contains 325290 sequences. (Running on oeis4.)