login
A263202
Decimal expansion of the lowest Dirichlet eigenvalue of the Laplacian within the unit-edged regular hexagon.
1
7, 1, 5, 5, 3, 3, 9, 1, 3, 3, 9, 2, 6, 0, 5, 5, 1, 2, 8, 2, 1, 0, 0, 1, 7, 6, 1, 6, 8, 3, 3, 1, 3, 9, 2, 8, 0, 6, 6, 9, 1, 9, 9, 5, 8, 5, 7, 7, 6, 9, 7, 7, 9, 2, 0, 3, 4, 9, 4, 2, 4, 9, 0, 4, 7, 4, 4, 3, 3, 3, 1, 2, 2, 5, 0, 9, 2, 5, 3, 3, 7, 5, 4, 8, 7, 5
OFFSET
1,1
LINKS
Robert Stephen Jones, Table of n, a(n) for n = 1..1001
L. Bauer and E. L. Reiss, Cutoff wavenumbers and modes of hexagonal waveguides, SIAM J. of Appl. Math., 35 (1978), 508-514. (Note: 6-digit results.)
L. M. Cureton and J. R. Kuttler, Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection, Journal of Sound and Vibration, 220 (1998), 83-98. (Note: Table 2 presents their 8-digit digit results.)
Robert S. Jones, Computing ultra-precise eigenvalues of the Laplacian within polygons, arXiv preprint arXiv:1602.08636, 2016
EXAMPLE
7.1553391339260551282100176168331392806691995857769779...
CROSSREFS
Cf. A262701 (L-shape) and A262823 (regular pentagon).
Sequence in context: A021587 A195496 A065479 * A011478 A334072 A118307
KEYWORD
nonn,cons
AUTHOR
STATUS
approved