This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263202 Decimal expansion of the lowest Dirichlet eigenvalue of the Laplacian within the unit-edged regular hexagon. 1
 7, 1, 5, 5, 3, 3, 9, 1, 3, 3, 9, 2, 6, 0, 5, 5, 1, 2, 8, 2, 1, 0, 0, 1, 7, 6, 1, 6, 8, 3, 3, 1, 3, 9, 2, 8, 0, 6, 6, 9, 1, 9, 9, 5, 8, 5, 7, 7, 6, 9, 7, 7, 9, 2, 0, 3, 4, 9, 4, 2, 4, 9, 0, 4, 7, 4, 4, 3, 3, 3, 1, 2, 2, 5, 0, 9, 2, 5, 3, 3, 7, 5, 4, 8, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Stephen Jones, Table of n, a(n) for n = 1..1001 L. Bauer and E. L. Reiss, Cutoff wavenumbers and modes of hexagonal waveguides, SIAM J. of Appl. Math., 35 (1978), 508-514. (Note: 6-digit results.) L. M. Cureton and J. R. Kuttler, Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection, Journal of Sound and Vibration, 220 (1998), 83-98. (Note: Table 2 presents their 8-digit digit results.) Robert S. Jones, Computing ultra-precise eigenvalues of the Laplacian within polygons, arXiv preprint arXiv:1602.08636, 2016 EXAMPLE 7.1553391339260551282100176168331392806691995857769779... CROSSREFS Cf. A262701 (L-shape) and A262823 (regular pentagon). Sequence in context: A021587 A195496 A065479 * A011478 A118307 A178757 Adjacent sequences:  A263199 A263200 A263201 * A263203 A263204 A263205 KEYWORD nonn,cons AUTHOR Robert Stephen Jones, Oct 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 01:32 EST 2018. Contains 317118 sequences. (Running on oeis4.)