login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195496 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio). 5
1, 0, 1, 7, 1, 5, 3, 4, 4, 6, 7, 5, 4, 8, 0, 4, 4, 6, 6, 2, 5, 6, 7, 9, 8, 1, 8, 7, 8, 1, 6, 6, 0, 6, 3, 3, 6, 9, 7, 4, 3, 6, 7, 9, 8, 2, 5, 5, 3, 7, 4, 6, 3, 9, 5, 6, 4, 0, 3, 4, 9, 5, 5, 6, 1, 7, 5, 7, 7, 6, 1, 4, 7, 5, 2, 9, 8, 5, 3, 2, 8, 9, 2, 4, 2, 4, 6, 6, 6, 3, 7, 8, 4, 1, 8, 4, 8, 3, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

See A195304 for definitions and a general discussion.

LINKS

Table of n, a(n) for n=1..100.

EXAMPLE

(B)=1.017153446754804466256798187816606336...

MATHEMATICA

a = b - 1; b = GoldenRatio; h = 2 a/3; k = b/3;

f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f1 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (A) A195495 *)

f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f2 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (B) A195496 *)

f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f3 = (f[t])^(1/2) /. Part[s, 1]

RealDigits[%, 10, 100] (* (C) A195497 *)

c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)

RealDigits[%, 10, 100] (* Philo(ABC, G) A195498 *)

CROSSREFS

Cf. A195304.

Sequence in context: A181722 A317833 A021587 * A065479 A263202 A011478

Adjacent sequences:  A195493 A195494 A195495 * A195497 A195498 A195499

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Sep 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 09:58 EDT 2018. Contains 316525 sequences. (Running on oeis4.)