login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263199 Expansion of Product_{k>=1} 1/(1 - x^(2*k+1))^(2*k+1). 4
1, 0, 0, 3, 0, 5, 6, 7, 15, 19, 36, 41, 77, 100, 156, 230, 317, 482, 665, 981, 1354, 1967, 2710, 3852, 5363, 7453, 10373, 14287, 19780, 27022, 37220, 50583, 69140, 93693, 127098, 171640, 231469, 311323, 417627, 559577, 747122, 996947, 1325872, 1761900 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015

FORMULA

For n>1, a(n) = A262811(n) - A262811(n-1).

a(n) ~ A * Zeta(3)^(17/36) * exp(-1/12 + 3 * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * sqrt(3*Pi) * n^(35/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

MAPLE

with(numtheory):

b:= proc(n) option remember; `if`(n=0, 1, add(add(d*

      `if`(d::even, 0, d), d=divisors(j))*b(n-j), j=1..n)/n)

    end:

seq(b(n)-b(n-1), n=0..60);  # after Alois P. Heinz

MATHEMATICA

nmax = 100; CoefficientList[Series[Product[1/(1 - x^(2*k+1))^(2*k+1), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000219, A035528, A262811, A263140, A263149, A263150.

Sequence in context: A102391 A038556 A193508 * A052483 A249859 A213724

Adjacent sequences:  A263196 A263197 A263198 * A263200 A263201 A263202

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 03:59 EDT 2018. Contains 304733 sequences. (Running on oeis4.)